Encyclopedia of Robotics

Living Edition
| Editors: Marcelo H Ang, Oussama Khatib, Bruno Siciliano

Vision for the Marine Environment

  • Nuno GraciasEmail author
  • Pere Ridao
  • Rafael Garcia
  • Marc Carreras
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-41610-1_17-1

Synonyms

Definition

Vision for the Marine Environment refers to underwater imaging hardware and algorithms that enable the perception of the subsea environment for marine science applications, inspection and intervention.

Overview

For a long time, optical cameras have been used in ROVs to provide the user with visual feedback of the operational scene. Conversely, AUVs have been traditionally equipped with sonar imaging systems, for two main reasons. First, the range of acoustic imaging is significantly higher, and second, as a consequence, they can work at a safer altitude, while the AUV follows the bottom profile. Nevertheless, during the last decades, vision systems have become smaller and more power-efficient, and the robot hardware has become more powerful and capable of storing the images onboard. Nowadays, commercial AUVs may be equipped with vision systems able to provide high-resolution seafloor imagery in...

This is a preview of subscription content, log in to check access.

References

  1. Bailey T, Durrant-Whyte H (2006) Simultaneous localization and mapping (SLAM): part II. IEEE Robot Autom Mag 13(3):108–117CrossRefGoogle Scholar
  2. Bingham B, Foley B, Singh H, Camilli R, Delaporta K, Eustice R, Mallios A, Mindell D, Roman CN, Sakellariou D (2010) Robotic tools for deep water archaeology: surveying an ancient shipwreck with an autonomous underwater vehicle. J Field Robot 27(6):702–717CrossRefGoogle Scholar
  3. Bodenmann A, Thornton B, Ura T (2017) Generation of high-resolution three-dimensional reconstructions of the seafloor in color using a single camera and structured light. J Field Robot 34(5):833–851CrossRefGoogle Scholar
  4. Bosch J, Gracias N, Ridao P, Ribas D (2015) Omnidirectional underwater camera design and calibration. Sensors 15(3):6033–6065CrossRefGoogle Scholar
  5. Bosch J, Gracias N, Ridao P, Istenič K, Ribas D (2016) Close-range tracking of underwater vehicles using light beacons. Sensors 16(4):429CrossRefGoogle Scholar
  6. Bryson M, Johnson-Roberson M, Pizarro O, Williams S (2012) Repeatable robotic surveying of marine benthic habitats for monitoring long-term change. In: Workshop on robotics for environmental monitoring at robotics: science and systems (RSS)Google Scholar
  7. Camilli R, Nomikou P, Escartin J, Ridao P, Mallios A, Kilias S, Argyraki A (2015) The Kallisti Limnes, carbon dioxide-accumulating subsea pools. Sci Rep, pp 1-9Google Scholar
  8. Campos R, Gracias N, Ridao P (2016) Underwater multi-vehicle trajectory alignment and mapping using acoustic and optical constraints. Sensors 16(3):387CrossRefGoogle Scholar
  9. Chantler MJ, Clark J, Umasuthan M (1997) Calibration and operation of an underwater laser triangulation sensor: the varying baseline problem. Opt Eng 36(9):2604CrossRefGoogle Scholar
  10. Chaves SM, Galceran E, Ozog P, Walls JM, Eustice RM (2017) Pose-graph SLAM for underwater navigation. Springer, Cham, pp 143–160CrossRefGoogle Scholar
  11. Corke P, Detweiler C, Dunbabin M, Hamilton M, Rus D, Vasilescu I (2007) Experiments with underwater robot localization and tracking. In: Proceedings 2007 IEEE international conference on robotics and automation, pp 4556–4561Google Scholar
  12. Dansereau DG, Mahon I, Pizarro O, Williams SB (2011) Plenoptic flow: closed-form visual odometry for light field cameras. In: 2011 IEEE/RSJ international conference on intelligent robots and systems, pp 4455–4462Google Scholar
  13. Durrant-Whyte H, Bailey T (2006) Simultaneous localization and mapping: part I. IEEE Robot Autom Mag 13(2):99–110CrossRefGoogle Scholar
  14. Escartin J, Barreyre T, Cannat M, Garcia R, Gracias N, Deschamps A, Salocchi A, Sarradin P-M, Ballu V (2015) Hydrothermal activity along the slow-spreading lucky strike ridge segment (Mid-Atlantic Ridge): distribution, heatflux, and geological controls. Earth Planet Sci Lett 431:173–185CrossRefGoogle Scholar
  15. Eustice R, Singh H, Leonard J, Walter M (2006a) Visually mapping the RMS Titanic: conservative covariance estimates for SLAM information filters. Int J Robot Res 25(12):1223–1242Google Scholar
  16. Eustice RM, Singh H, Leonard JJ (2006b) Exactly sparse delayed-state filters for view-based SLAM. IEEE Trans Robot 22(6):1100–1114CrossRefGoogle Scholar
  17. Ferreira F, Veruggio G, Caccia M, Bruzzone G (2012) A comparison between different feature-based methods for ROV vision-based speed estimation. In: Proceedings of the 3rd IFAC workshop on navigation, guidance and control of underwater vehicles, pp 325–330CrossRefGoogle Scholar
  18. Ferrer J, Elibol A, Delaunoy O, Gracias N, Garcia R (2007) Large-area photo-mosaics using global alignment and navigation data. In: Proceedings of the IEEE OCEANS conference, VancouverGoogle Scholar
  19. Fraundorfer F, Scaramuzza D (2012) Visual odometry : part II: matching, robustness, optimization, and applications. IEEE Robot Autom Mag 19(2):78–90CrossRefGoogle Scholar
  20. Garcia R, Puig J, Ridao P, Cufi X (2002) Augmented State Kalman filtering for AUV navigation. In: Proceedings of 2002 IEEE international conference on robotics and automation, vol 4, pp 4010–4015Google Scholar
  21. Gracias N, Zwaan S, Bernardino A, Santos-Victor J (2003) Mosaic based navigation for autonomous underwater vehicles. J Oceanic Eng 28(4):609–624CrossRefGoogle Scholar
  22. Gracias N, Ridao P, Garcia R, Escartín J, L’Hour M, Cibecchini F, Campos R, Carreras M, Ribas D, Palomeras N, Magi L, Palomer A, Nicosevici T, Prados R, Hegedüs R, Neumann L, de Filippo F, Mallios A (2013) Mapping the Moon: using a lightweight AUV to survey the site of the 17th century ship ‘La Lune’. In: Proceedings of the IEEE OCEANS 2013 conference, BergenGoogle Scholar
  23. Hildebrandt M, Kirchner F (2010) IMU-aided stereo visual odometry for ground-tracking AUV applications. In: Proceedings of the IEEE OCEANS 2010 conference – SydneyGoogle Scholar
  24. Horgan J, Toal D (2009) Computer vision applications in the navigation of unmanned underwater vehicles. In: Underwater vehicles (InTech)Google Scholar
  25. Inglis G, Smart C, Vaughn I, Roman C (2012) A pipeline for structured light bathymetric mapping. In: IEEE/RSJ international conference on intelligent robots and systems, pp 4425–4432Google Scholar
  26. Istenič K, Ila V, Polok L, Gracias N, García R (2017) Mission-time 3D reconstruction with quality estimation. In: Proceedings of the MTS/IEEE OCEANS 2017 conference, AberdeenGoogle Scholar
  27. Johnson-Roberson M, Pizarro O, Willams S (2009) Towards large scale optical and acoustic sensor integration for visualization. In: Proceedings of the IEEE Oceans 2009-Europe conference, BremenGoogle Scholar
  28. Kato H, Billinghurst M (1999) Marker tracking and HMD calibration for a video-based augmented reality conferencing system. In: Proceedings of the 2nd IEEE and ACM international workshop on augmented reality, IWAR’99. IEEE Computer Society, Washington, DC, pp 85–94CrossRefGoogle Scholar
  29. Kim A, Eustice RM (2013) Real-time visual SLAM for autonomous underwater hull inspection using visual saliency. IEEE Trans Robot 29(3):719–733CrossRefGoogle Scholar
  30. Kocak D, Caimi F, Das P, Karson J (1999) A 3-D laser line scanner for outcrop scale studies of seafloor features. Proc OCEANS Conf 3:1105–1114Google Scholar
  31. Krupínski S, Allibert G, Hua MD, Hamel T (2017) An inertial-aided homography-based visual servo control approach for (almost) fully actuated autonomous underwater vehicles. IEEE Trans Robot 33(5):1041–1060CrossRefGoogle Scholar
  32. Lots JF, Lane DM, Trucco E, Chaumette F (2001) A 2D visual servoing for underwater vehicle station keeping. In: Proceedings 2001 ICRA IEEE international conference on robotics and automation, vol 3, pp 2767–2772Google Scholar
  33. Łuczyński T, Pfingsthorn M, Birk A (2017) The pinax-model for accurate and efficient refraction correction of underwater cameras in flat-pane housings. Ocean Eng 133(Supplement C):9–22CrossRefGoogle Scholar
  34. Marchand E, Chaumette F, Spindler F, Perrier M (2001) Controlling an uninstrumented ROV manipulator by visual servoing. In: MTS/IEEE Oceans 2001 conference, Honolulu, vol 2, pp 1047–1053Google Scholar
  35. Massot-Campos M, Oliver-Codina G (2014) Underwater laser-based structured light system for one-shot 3D reconstruction. In: IEEE sensors 2014 proceedings, pp 1138–1141Google Scholar
  36. Negahdaripour S, Zhang H, Firoozfam P, Oles J (2001) Utilizing panoramic views for visually guided tasks in underwater robotics applications. In Proceedings of the MTS/IEEE Oceans 2001 conference, Honolulu, vol 4, pp 2593–2600Google Scholar
  37. Ortiz A, Antich J, Oliver G (2011) A particle filter-based approach for tracking undersea narrow telecommunication cables. Mach Vis Appl 22(2):283–302CrossRefGoogle Scholar
  38. Palomer A, Ridao P, Ribas D, Forest J (2017) Underwater 3D laser scanners: the deformation of the plane. Springer International Publishing, Cham, pp 73–88Google Scholar
  39. Palomeras N, Nagappa S, Ribas D, Gracias N, Carreras M (2013) Vision-based localization and mapping system for AUV intervention. In: Proceedings of the IEEE oceans 2013 conference, BergenGoogle Scholar
  40. Palomeras N, Peñalver A, Massot-Campos M, Negre PL, Fernández JJ, Ridao P, Sanz PJ, Oliver-Codina G (2016) I-AUV docking and panel intervention at sea. Sensors 16(10):1673CrossRefGoogle Scholar
  41. Pfingsthorn M, Birk A, Schwertfeger S, Buelow H, Pathak K (2010) Maximum likelihood mapping with spectral image registration. In: Proceedings of the IEEE international conference on robotics and automation ICRA2010, pp 4282–4287Google Scholar
  42. Prados R, Garcia R, Neumann L (2014) Image blending techniques and their application in underwate mosaicing. Springer, ChamCrossRefGoogle Scholar
  43. Prats M, Fernandez JJ, Sanz PJ (2012) Combining template tracking and laser peak detection for 3D reconstruction and grasping in underwater environments. IEEE Int Conf Intell Robot Syst 1:106–112Google Scholar
  44. Remondino F, Spera MG, Nocerino E, Menna F, Nex F, Gonizzi-Barsanti S (2013) Dense image matching: comparisons and analyses. In: Proceedings of IEEE conference on digital heritage, vol 1, pp 47–54Google Scholar
  45. Ridao P, Carreras M, Ribas D, Garcia R (2010) Visual inspection of hydroelectric dams using an autonomous underwater vehicle. J Field Robot 27(6):759–778CrossRefGoogle Scholar
  46. Roman C, Inglis G, Rutter J (2010) Application of structured light imaging for high resolution mapping of underwater archaeological sites. In: OCEANS 2010 IEEE – SydneyGoogle Scholar
  47. Singh H, Roman C, Pizarro O, Eustice R, Can A (2007) Towards high-resolution imaging from underwater vehicles. Int J Robot Res 26(1):55–74CrossRefGoogle Scholar
  48. Tarel J-P, Hautière N (2009) Fast visibility restoration from a single color or gray level image. In: Proceedings of IEEE international conference on computer vision (ICCV’09), Kyoto, pp 2201–2208Google Scholar
  49. Treibitz T, Schechner YY (2009) Active polarization descattering. IEEE Trans Pattern Anal Mach Intell 31(3):385–399CrossRefGoogle Scholar
  50. Vallicrosa G, Bosch J, Palomeras N, Ridao P, Carreras M, Gracias N (2016) Autonomous homing and docking for AUVs using range-only localization and light beacons. IFAC-PapersOnLine 49(23):54–60. 10th IFAC CAMS 2016MathSciNetCrossRefGoogle Scholar
  51. Waechter M, Moehrle N, Goesele M (2014) Let there be color! large-scale texturing of 3D reconstructions. In: Proceedings of the 13th ECCV conference, Zurich, pp 836–850Google Scholar
  52. Weidemann A, Fournier G, Forand L, Mathieu P (2005) Optical image sensing through turbid water. In: Proceedings of SPIE, vol 5780, pp 59–70Google Scholar
  53. Williams S, Pizarro O, Jakuba M, Johnson C, Barrett N, Babcock R, Kendrick G, Steinberg P, Heyward A, Doherty P, Mahon I, Johnson-Roberson M, Steinberg D, Friedman A (2012) Monitoring of benthic reference sites: using an autonomous underwater vehicle. IEEE Robot Autom Mag 19(1):73–84CrossRefGoogle Scholar
  54. Wirth S, Carrasco P, Codina G (2013) Visual odometry for autonomous underwater vehicles. In: Proceedings of the MTS/IEEE Oceans 2013 conference, BergenGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nuno Gracias
    • 1
    Email author
  • Pere Ridao
    • 1
  • Rafael Garcia
    • 1
  • Marc Carreras
    • 1
  1. 1.ViCOROB InstituteUniversity of GironaGironaSpain

Section editors and affiliations

  • Gianluca Antonelli
    • 1
  1. 1.University of Cassino and Southern LazioCassinoItaly