Encyclopedia of Robotics

Living Edition
| Editors: Marcelo H Ang, Oussama Khatib, Bruno Siciliano

Bio-inspired Underwater Robots

  • Maarja KruusmaaEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-41610-1_13-1

Synonyms

Definition

Bio-inspired underwater robots are influenced by examples of biological systems, sometimes in a rather loose manner.

Future Directions

modeling and control of continuum and compliant actuators, flow perception, modeling and control of robot interaction in the fluid.

Extended Definition

Bio-inspired underwater robots are nature-inspired alternative solutions for established technological concepts in underwater robotics, such as propellers, standard sensors, rigid hull compartments, and construction materials. It may also mean adopting new control methods, locomotion mechanisms, and materials for building the robots.

Overview

Conventional underwater vehicle technology has adopted the historical construction elements and methods used in surface vehicles. For example, the first approximation of a simple underwater robot is a water-proofed and submerged ship...

This is a preview of subscription content, log in to check access.

References

  1. Brown K, Capus C, Pailhas Y, Petillot Y, Lane D (2011) The application of bioinspired sonar to cable tracking on the seafloor. EURASIP J Adv Signal Process 2011:2CrossRefGoogle Scholar
  2. Calisti M (2017) Soft robotics in underwater legged locomotion: from octopus–inspired solutions to running robots. In: Soft robotics: trends, applications and challenges. Springer International Publishing Cham, pp 31–36. https://link.springer.com/chapter/10.1007/978-3-319-46460-2_5Google Scholar
  3. Curet OM, Patankar NA, Lauder GV, MacIver MA (2011) Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor. Bioinspir Biomim 6(2):026004CrossRefGoogle Scholar
  4. Dudek G, Giguere P, Prahacs C, Saunderson S, Sattar J, Torres-Mendez LA, ..., Zacher J (2007) Aqua: an amphibious autonomous robot. Computer 40(1):46CrossRefGoogle Scholar
  5. Hubbard JJ, Fleming M, Palmre V, Pugal D, Kim KJ, Leang KK (2014) Monolithic IPMC fins for propulsion and maneuvering in bioinspired underwater robotics. IEEE J Ocean Eng 39(3):540–551CrossRefGoogle Scholar
  6. Ijspeert AJ, Crespi A, Ryczko D, Cabelguen JM (2007) From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817):1416–1420CrossRefGoogle Scholar
  7. Kato N, Inaba T (1998) Guidance and control of fish robot with apparatus of pectoral fin motion. In: Robotics and automation, 1998. Proceedings. 1998 IEEE international conference on, vol 1, Leuven. IEEE, pp 446–451. https://ieeexplore.ieee.org/abstract/document/677014/
  8. Katzschmann RK, Marchese AD, Rus D (2016) Hydraulic autonomous soft robotic fish for 3D swimming. In Experimental robotics. Springer International Publishing, Cham, pp 405–420. https://link.springer.com/chapter/10.1007/978-3-319-23778-7_27Google Scholar
  9. Kelasidi E, Liljeback P, Pettersen KY, Gravdahl JT (2016) Innovation in underwater robots: biologically inspired swimming snake robots. IEEE Robot Autom Mag 23(1):44–62CrossRefGoogle Scholar
  10. Kruusmaa M, Fiorini P, Megill W, de Vittorio M, Akanyeti O, Visentin F et al (2014) Filose for svenning: a flow sensing bioinspired robot. IEEE Robot Autom Mag 21(3):51–62CrossRefGoogle Scholar
  11. Lebastard V, Boyer F, Lanneau S (2016) Reactive underwater object inspection based on artificial electric sense. Bioinspir Biomim 11(4):045003CrossRefGoogle Scholar
  12. Liu J, Dukes I, Hu H (2005) Novel mechatronics design for a robotic fish. In: Intelligent robots and systems, 2005 (IROS 2005). 2005 IEEE/RSJ international conference on. IEEE, pp 807–812Google Scholar
  13. Long JH Jr, Schumacher J, Livingston N, Kemp M (2006) Four flippers or two? Tetrapodal swimming with an aquatic robot. Bioinspir Biomim 1(1):20CrossRefGoogle Scholar
  14. Park SJ, Gazzola M, Park KS, Park S, Di Santo V, Blevins EL, ..., Pasqualini FS (2016) Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353(6295):158–162CrossRefGoogle Scholar
  15. Salumäe T, Raag R, Rebane J, Ernits A, Toming G, Ratas M, Kruusmaa M (2014) Design principle of a biomimetic underwater robot u-cat. In: Oceans-St. John’s, 2014. IEEE, pp 1–5. https://ieeexplore.ieee.org/abstract/document/7003126/
  16. Sfakiotakis M, Lane DM, Davies JBC (1999) Review of fish swimming modes for aquatic locomotion. IEEE J Ocean Eng 24(2):237–252CrossRefGoogle Scholar
  17. Stefanini C, Orofino S, Manfredi L, Mintchev S, Marrazza S, Assaf T, Dario P (2012) A novel autonomous, bioinspired swimming robot developed by neuroscientists and bioengineers. Bioinspir Biomim 7(2):025001CrossRefGoogle Scholar
  18. Wehner M, Truby RL, Fitzgerald DJ, Mosadegh B, Whitesides GM, Lewis JA, Wood RJ (2016) An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536(7617):451–455CrossRefGoogle Scholar
  19. Williams BJ, Anand SV, Rajagopalan J, Saif MTA (2014) A self-propelled biohybrid swimmer at low Reynolds number. Nat Commun 5:3081CrossRefGoogle Scholar
  20. Zhou C, Low KH (2010) Better endurance and load capacity: an improved design of manta ray robot (RoMan-II). J Bionic Eng 7:S137–S144CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for BioroboticsTallinn University of TechnologyTallinnEstonia

Section editors and affiliations

  • Gianluca Antonelli
    • 1
  1. 1.University of Cassino and Southern LazioCassinoItaly