Skip to main content

Variable Impedance Actuators

  • Living reference work entry
  • First Online:
Encyclopedia of Robotics

Synonyms

Compliant actuators: Variable stiffness actuators (when no controlled damping), soft actuators

Definition

A Variable Impedance Actuator (VIA) is an actuator with dedicated elements that decouple the motor inertia form the link inertia in a compliant and damped manner. The compliance and/or damping can be varied actively in order to adapt the natural robot behavior according to the desired task.

Overview

Traditional actuators are designed to behave as ideal sources of force/torque (as for direct drive DC motors) or position (as for position controlled servomotors). Those behaviors have the advantage of (usually) simplifying the control problem of the system the actuators are attached to (in the case of rigid position actuators). These actuators perform well in many high-precision industrial applications.

Variable Impedance Actuators, in contrast to a stiff actuator, are actuators with a richer dynamic behavior. Their output shaft is attracted toward an equilibrium position in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ajoudani A, Tsagarakis N, Bicchi A (2012) Tele-impedance: teleoperation with impedance regulation using a body–machine interface. Int J Robot Res 31(13):1642–1656

    Article  Google Scholar 

  • Alò R, Bottiglione F, Mantriota G (2016) An innovative design of artificial knee joint actuator with energy recovery capabilities. J Mech Robot 8(1):011009

    Article  Google Scholar 

  • Berry A, Lemus D, Babuška R, Vallery H (2016) Directional singularity-robust torque control for gyroscopic actuators. IEEE/ASME Trans Mechatron 21(6):2755–2763

    Article  Google Scholar 

  • Boaventura T, Buchli J, Semini C, Caldwell DG (2015) Model-based hydraulic impedance control for dynamic robots. IEEE Trans Robot 31(6):1324–1336

    Article  Google Scholar 

  • Braun DJ, Howard M, Vijayakumar S (2012) Exploiting variable stiffness in explosive movement tasks. In: Robotics: science and systems VII, p 25

    Google Scholar 

  • Carpi F, Rossi DD, Kornbluh R, Pelrine R, Sommer-Larsen P (eds) (2008) Dielectric elastomers as electromechanical transducers: fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology. Elsevier, Oxford

    Google Scholar 

  • Chalvet V, Braun DJ (2017) Criterion for the design of low-power variable stiffness mechanisms. IEEE Trans Robot 33(4):1002–1010

    Article  Google Scholar 

  • De Luca A et al (2009) Nonlinear decoupled motion-stiffness control and collision detection/reaction for the VSA-II variable stiffness device. In: Intelligent robots and systems, IROS 2009. IEEE/RSJ international conference on. IEEE

    Google Scholar 

  • Della Santina C et al (2017) Controlling soft robots: balancing feedback and feedforward elements. IEEE Robot Autom Mag 24(3):75–83

    Article  Google Scholar 

  • Fankhauser P et al (2013) Reinforcement learning of single legged locomotion. In: Intelligent robots and systems (IROS), 2013 IEEE/RSJ international conference on. IEEE

    Google Scholar 

  • Fasse ED, Broenink JF (1997) A spatial impedance controller for robotic manipulation. IEEE Trans Robot Autom 13(4):546–556

    Article  Google Scholar 

  • Furnémont R, Mathijssen G, Verstraten T, Jimenez-Fabian R, Lefeber D, Vanderborght B (2018) Novel control strategy for the +SPEA: a redundant actuator with reconfigurable parallel elements. Mechatronics 53:28–38

    Article  Google Scholar 

  • Geeroms J, Flynn L, Jimenez-Fabian R, Vanderborght B, Lefeber D (2018) Energetic analysis and optimization of a MACCEPA actuator in an ankle prosthesis. Auton Robot 42(1):147–158

    Article  Google Scholar 

  • Grioli G, Wolf S, Garabini M, Catalano M, Burdet E, Caldwell D, Carloni R, Friedl W, Grebenstein M, Laffranchi M, Lefeber D (2015) Variable stiffness actuators: the user’s point of view. Int J Robot Res 34(6):727–743

    Article  Google Scholar 

  • Groothuis SS, Rusticelli G, Zucchelli A, Stramigioli S, Carloni R (2012) The vsaUT-II: a novel rotational variable stiffness actuator. In: IEEE international conference on robotics and automation, ICRA 2012

    Google Scholar 

  • Haddadin S, Laue T, Frese U, Wolf S, Albu-Schäffer A, Hirzinger G (2009) Kick it with elasticity: safety and performance in human–robot soccer. Robot Auton Syst 57(8):761–775

    Article  Google Scholar 

  • Haddadin S, Albu-Schäffer A, Eiberger O, Hirzinger G (2010) New insights concerning intrinsic joint elasticity for safety. In: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ international conference on, pp 2181–2187

    Google Scholar 

  • Haddadin S et al (2011) Optimal control for maximizing link velocity of robotic variable stiffness joints. In: IFAC world congress

    Google Scholar 

  • Hogan N (1984) Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans Autom Control 29(8):681–690

    Article  Google Scholar 

  • Hogan N (1985) Impedance control: an approach to manipulation: Part I: Theory. ASME J Dyn Syst Meas Control 107(1):1–7

    Article  Google Scholar 

  • Hollander K, Sugar T, Herring D (2005) Adjustable robotic tendon using a “jack spring” TM. In: 9th international conference on rehabilitation robotics, ICORR 2005, pp 113–118

    Google Scholar 

  • Hyon SH, Mita T (2002) Development of a biologically inspired hopping robot-“Kenken”. In: Robotics and automation, 2002. Proceedings of ICRA‘02. IEEE international conference on, vol 4, pp 3984–3991

    Google Scholar 

  • Jafari A, Tsagarakis N, Vanderborght B, Caldwell D (2010) A novel actuator with adjustable stiffness (AwAS). In: IEEE/RSJ international conference on intelligent robots and systems, IROS 2010, pp 4201–4206

    Google Scholar 

  • Keppler M et al (2018a) Elastic Structure Preserving Impedance (ESPi) control for compliantly actuated robots. 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS 2018)

    Google Scholar 

  • Keppler M, Lakatos D, Werner A, Loeffl F, Ott C, Albu-Schaeffer A (2018b) Visco-Elastic Structure Preserving Impedance (VESPI) control for compliantly actuated robots. 2018 European control conference

    Google Scholar 

  • Keppler M, Lakatos D, Ott C, Albu-Schäffer A (2018c) Elastic Structure Preserving (ESP) control for compliantly actuated robots. IEEE Trans Robot 34(2):317–335

    Article  Google Scholar 

  • Laffranchi M, Tsagarakis N (2011) A compact compliant actuator (CompActTM) with variable physical damping. In: IEEE international conference on robotics and automation, ICRA 2011, pp 4644–4650

    Google Scholar 

  • Laurin-Kovitz K, Colgate JE, Carnes SDR (1991) Design of components for programmable passive impedance. In: Proceedings of IEEE international conference on robotics automation, pp 1476–1481

    Google Scholar 

  • Ménard T, Grioli G, Bicchi A (2014) A stiffness estimator for agonistic–antagonistic variable-stiffness-actuator devices. IEEE Trans Robot 30(5):1269–1278

    Article  Google Scholar 

  • Morita T, Sugano S (1995) Design and development of a new robot joint using a mechanical impedance adjuster. In: IEEE international conference on robotics and automation, ICRA 1995, vol 3, pp 2469–2475

    Google Scholar 

  • Ott C, Albu-Schäffer A, Kugi A, Hirzinger G (2008) On the passivity based impedance control of flexible joint robots. IEEE Trans Robot 24(2):416–429

    Article  Google Scholar 

  • Plooij M, Mathijssen G, Cherelle P, Lefeber D, Vanderborght B (2015) Lock your robot: a review of locking devices in robotics. IEEE Robot Autom Mag 22(1):106–117

    Article  Google Scholar 

  • Pratt G, Williamson M (1990) Series elastic actuators. In: IEEE international workshop on intelligent robots and systems, IROS 1990, pp 399–406

    Google Scholar 

  • Schiavi R, Grioli G, Sen S, Bicchi A (2008) VSA-II: a novel prototype of variable stiffness actuator for safe and performing robots interacting with humans. In: IEEE international conference on robotics and automation, ICRA 2008, pp 2171–2176

    Google Scholar 

  • Seok S, Wang A, Otten D, Kim S (2012) Actuator design for high force proprioceptive control in fast legged locomotion. In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ international conference on. IEEE, pp 1970–1975

    Google Scholar 

  • Ugurlu B, Forni P, Doppmann C, Morimoto J (2015) Torque and variable stiffness control for antagonistically driven pneumatic muscle actuators via a stable force feedback controller. In: Intelligent robots and systems (IROS), 2015 IEEE/RSJ international conference on. IEEE, pp 1633–1639

    Google Scholar 

  • Van Ham R, Vanderborght B, Van Damme M, Verrelst B, Lefeber D (2007) MAC-CEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: design and implementation in a biped robot. Robot Auton Syst 55(10):761–768

    Article  Google Scholar 

  • Vanderborght B, Verrelst B, Van Ham R, Van Damme M, Beyl P, Lefeber D (2008) Development of a compliance controller to reduce energy consumption for bipedal robots. Auton Robot 24(4):419–434

    Article  Google Scholar 

  • Vanderborght B, Albu-Schäffer A, Bicchi A, Burdet E, Caldwell DG, Carloni R, Catalano MG et al (2013) Variable impedance actuators: a review. Robot Auton Syst 61(12):1601–1614

    Article  Google Scholar 

  • Verstraten T, Beckerle P, Furnémont R, Mathijssen G, Vanderborght B, Lefeber D (2016) Series and parallel elastic actuation: impact of natural dynamics on power and energy consumption. Mech Mach Theory 102:232–246

    Article  Google Scholar 

  • Vu HQ, Yu X, Iida F, Pfeifer R (2015) Improving energy efficiency of hopping locomotion by using a variable stiffness actuator. IEEE/ASME Trans Mechatron 21(1):472–486

    Google Scholar 

  • Wolf S, Albu-Schäffer A (2013) Towards a robust variable stiffness actuator. In: 2013 IEEE/RSJ international conference on intelligent robots and systems, Tokyo, pp 5410–5417

    Google Scholar 

  • Wolf S, Hirzinger G (2008) A new variable stiffness design: matching requirements of the next robot generation. In: IEEE international conference on robotics and automation, ICRA 2008, pp 1741–1746

    Google Scholar 

  • Wolf S, Eiberger O, Hirzinger G (2011) The DLR FSJ: energy based design of a variable stiffness joint. In: 2011 IEEE international conference on robotics and automation, Shanghai, pp 5082–5089

    Google Scholar 

  • Wolf S, Grioli G, Eiberger O, Friedl W, Grebenstein M, Höppner H, Burdet E, Caldwell DG, Carloni R, Catalano MG, Lefeber D (2016) Variable stiffness actuators: review on design and components. IEEE/ASME Trans Mechatron 21(5):2418–2430

    Article  Google Scholar 

  • Yang C et al (2011) Human-like adaptation of force and impedance in stable and unstable interactions. IEEE Trans Robot 27(5):918–930

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bram Vanderborght .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vanderborght, B., Wolf, S., Grioli, G. (2020). Variable Impedance Actuators. In: Ang, M., Khatib, O., Siciliano, B. (eds) Encyclopedia of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41610-1_117-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41610-1_117-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41610-1

  • Online ISBN: 978-3-642-41610-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics