Synonyms
Definition
Hydraulic actuators are mechanical devices, e.g., hydraulic cylinders and motors, that convert hydraulic power into mechanical power.
Overview
Hydraulic actuators are the preferred choice for certain applications in robotics, thanks to several unique properties, such as:
High power-to-weight ratio, leading to lighter robots when large forces or torques are required;
Fast valves and high fluid stiffness make it possible to have high closed-loop gains with suitable stability margins;
Robust and simple mechanical design, with no need for reductions such as gearboxes and harmonic drives, making them suitable for dynamic applications with impacts.
Despite having such attractive characteristics, it is common to find members of the robotics community that have a prejudice against hydraulic actuators, believing they are dirty, messy, hard to control, and thus unsuitable for robotics. This is, in part, a myth. There are very good examples that show that it...
References
Atkeson CG, Hale J, Kawato M, Kotosaka S, Pollick F, Riley M, Schaal S, Shibata S, Tevatia G, Ude A (2000) Using humanoid robots to study human behaviour. IEEE Intell Syst 15:46–56
Barasuol V, Villarreal-Magaña OA, Sangiah D, Frigerio M, Baker M, Morgan R, Medrano-Cerda GA, Caldwell DG, Semini C (2018) Highly-integrated hydraulic smart actuators and smart manifolds for high-bandwidth force control. Front Robot AI 5:51
Boaventura T (2013) Hydraulic compliance control of the quadruped robot HyQ. Ph.D. thesis
Boaventura T, Focchi M, Frigerio M, Buchli J, Semini C, Medrano-Cerda GA, Caldwell DG (2012) On the role of load motion compensation in high-performance force control. In: IEEE/RSJ international conference on intelligent robots and systems (IROS 2012), pp 4066–4071. https://doi.org/10.1109/IROS.2012.6385953
Boaventura T, Buchli J, Semini C, Caldwell D (2015) Model-based hydraulic impedance control for dynamic robots. IEEE Trans Robot 31(6):1324–1336. https://doi.org/10.1109/TRO.2015.2482061
Bolignari M, Fontana M (2020) Design and experimental characterization of a high performance hydrostatic transmission for robot actuation. Meccanica 55(5):1169–1179
Engelberger JF (1980) Robotics in practice. Kogan Page Ltd. Springer
Hodges and Peter (1996) Hydraulic fluids, Butterworth-Heinemann.
Hodoshima R, Doi T, Fukuda Y, Hirose S, Okamoto T, Mori J (2007) Development of quadruped walking robot TITAN XI for steep slopes – slope map generation and map information application. J Robot Mechatron 19:13–26
Hyon SH, Emura T, Mita T (2003) Dynamics-based control of a one-legged hopping robot. J Syst Control Eng 217 (2):83–89
Kato I (1973) Development of wabot 1. Biomechanism 2:173–214
Kazerooni H, Steger R (2006) The berkeley lower extremity exoskeleton. ASME J Dyn Syst Meas Control 128:14–25
Kim JT, Cho JS, Park BY, Park S, Lee Y (2013) Experimental investigation on the design of leg for a hydraulic actuated quadruped robot. In: 44th international symposium on robotics (ISR)
Li X, Zhang S, Zhou H, Feng H, Fu Y (2018) Locomotion adaption for hydraulic humanoid wheel-legged robots over rough terrains. Int J Hum Robot 1:2150001
Mattila J, Koivumäki J, Caldwell DG, Semini C (2017) A survey on control of hydraulic robotic manipulators with projection to future trends. IEEE/ASME Trans Mechatron 22(2):669–680. https://doi.org/10.1109/TMECH.2017.2668604
Mosher RS (1969) Exploring the potential of a quadruped. SAE Trans 78:836–843
Pan M, Plummer A (2018) Digital switched hydraulics. Front Mech Eng 13(2):225–231
Park R (1997) Contamination control–a hydraulic oem perspective. In: Workshop on total contamination control
Raibert M (1986) Legged robots that balance. The MIT Press, Cambridge
Rong X, Li Y, Ruan J, Li B (2012) Design and simulation for a hydraulic actuated quadruped robot. J Mech Sci Technol 26(4):1171–1177
Rosentrater KA, Balamuralikrishma R (2005) Essential highlights of the history of fluid mechanics. In: Proceedings of 2005 ASEE annual conference and exposition
Semini C, Tsagarakis NG, Guglielmino E, Focchi M, Cannella F, Caldwell DG (2011) Design of HyQ – a hydraulically and electrically actuated quadruped robot. IMechE Part I: J Syst Control Eng 225(6):831–849
Semini C, Barasuol V, Focchi M, Boelens C, Emara M, Casella S, Villarreal O, Orsolino R, Fink G, Fahmi S, Medrano-Cerda G, Sangiah D, Lesniewski J, Fulton K, Donadon M, Baker M, Caldwell DG (2019) Brief introduction to the quadruped robot HyQReal. In: Italian conference on robotics and intelligent machines (I-RIM)
Suzumori K, Faudzi AA (2018) Trends in hydraulic actuators and components in legged and tough robots: a review. Adv Robot 32(9):458–476. https://doi.org/10.1080/01691864.2018.1455606
Vacca A, Franzoni G (2021) Hydraulic fluid power: fundamentals, applications, and circuit design. Wiley, Hoboken/Chichester
Waldron KJ, McGhee RB (1986) The adaptive suspension vehicle. IEEE Control Syst Mag 6(6):7–12
Watton J (2009) Fundamentals of fluid power control, vol 10. Cambridge University Press, Cambridge/New York
Zhang Z, Yu H, Cao W, Wang X, Meng Q, Chen C (2021) Design of a semi-active prosthetic knee for transfemoral amputees: gait symmetry research by simulation. Appl Sci 11(12):5328
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2022 Springer-Verlag GmbH Germany, part of Springer Nature
About this entry
Cite this entry
Boaventura, T., Semini, C. (2022). Hydraulic Actuation. In: Ang, M.H., Khatib, O., Siciliano, B. (eds) Encyclopedia of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41610-1_116-1
Download citation
DOI: https://doi.org/10.1007/978-3-642-41610-1_116-1
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41610-1
Online ISBN: 978-3-642-41610-1
eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering