Skip to main content

Hydraulic Actuation

  • Living reference work entry
  • First Online:
Encyclopedia of Robotics

Synonyms

Hydraulic drives

Definition

Hydraulic actuators are mechanical devices, e.g., hydraulic cylinders and motors, that convert hydraulic power into mechanical power.

Overview

Hydraulic actuators are the preferred choice for certain applications in robotics, thanks to several unique properties, such as:

  • High power-to-weight ratio, leading to lighter robots when large forces or torques are required;

  • Fast valves and high fluid stiffness make it possible to have high closed-loop gains with suitable stability margins;

  • Robust and simple mechanical design, with no need for reductions such as gearboxes and harmonic drives, making them suitable for dynamic applications with impacts.

Despite having such attractive characteristics, it is common to find members of the robotics community that have a prejudice against hydraulic actuators, believing they are dirty, messy, hard to control, and thus unsuitable for robotics. This is, in part, a myth. There are very good examples that show that it...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Atkeson CG, Hale J, Kawato M, Kotosaka S, Pollick F, Riley M, Schaal S, Shibata S, Tevatia G, Ude A (2000) Using humanoid robots to study human behaviour. IEEE Intell Syst 15:46–56

    Article  Google Scholar 

  • Barasuol V, Villarreal-Magaña OA, Sangiah D, Frigerio M, Baker M, Morgan R, Medrano-Cerda GA, Caldwell DG, Semini C (2018) Highly-integrated hydraulic smart actuators and smart manifolds for high-bandwidth force control. Front Robot AI 5:51

    Article  Google Scholar 

  • Boaventura T (2013) Hydraulic compliance control of the quadruped robot HyQ. Ph.D. thesis

    Google Scholar 

  • Boaventura T, Focchi M, Frigerio M, Buchli J, Semini C, Medrano-Cerda GA, Caldwell DG (2012) On the role of load motion compensation in high-performance force control. In: IEEE/RSJ international conference on intelligent robots and systems (IROS 2012), pp 4066–4071. https://doi.org/10.1109/IROS.2012.6385953

  • Boaventura T, Buchli J, Semini C, Caldwell D (2015) Model-based hydraulic impedance control for dynamic robots. IEEE Trans Robot 31(6):1324–1336. https://doi.org/10.1109/TRO.2015.2482061

    Article  Google Scholar 

  • Bolignari M, Fontana M (2020) Design and experimental characterization of a high performance hydrostatic transmission for robot actuation. Meccanica 55(5):1169–1179

    Article  Google Scholar 

  • Engelberger JF (1980) Robotics in practice. Kogan Page Ltd. Springer

    Google Scholar 

  • Hodges and Peter (1996) Hydraulic fluids, Butterworth-Heinemann.

    Google Scholar 

  • Hodoshima R, Doi T, Fukuda Y, Hirose S, Okamoto T, Mori J (2007) Development of quadruped walking robot TITAN XI for steep slopes – slope map generation and map information application. J Robot Mechatron 19:13–26

    Article  Google Scholar 

  • Hyon SH, Emura T, Mita T (2003) Dynamics-based control of a one-legged hopping robot. J Syst Control Eng 217 (2):83–89

    Google Scholar 

  • Kato I (1973) Development of wabot 1. Biomechanism 2:173–214

    Article  Google Scholar 

  • Kazerooni H, Steger R (2006) The berkeley lower extremity exoskeleton. ASME J Dyn Syst Meas Control 128:14–25

    Article  Google Scholar 

  • Kim JT, Cho JS, Park BY, Park S, Lee Y (2013) Experimental investigation on the design of leg for a hydraulic actuated quadruped robot. In: 44th international symposium on robotics (ISR)

    Google Scholar 

  • Li X, Zhang S, Zhou H, Feng H, Fu Y (2018) Locomotion adaption for hydraulic humanoid wheel-legged robots over rough terrains. Int J Hum Robot 1:2150001

    Google Scholar 

  • Mattila J, Koivumäki J, Caldwell DG, Semini C (2017) A survey on control of hydraulic robotic manipulators with projection to future trends. IEEE/ASME Trans Mechatron 22(2):669–680. https://doi.org/10.1109/TMECH.2017.2668604

    Article  Google Scholar 

  • Mosher RS (1969) Exploring the potential of a quadruped. SAE Trans 78:836–843

    Google Scholar 

  • Pan M, Plummer A (2018) Digital switched hydraulics. Front Mech Eng 13(2):225–231

    Article  Google Scholar 

  • Park R (1997) Contamination control–a hydraulic oem perspective. In: Workshop on total contamination control

    Google Scholar 

  • Raibert M (1986) Legged robots that balance. The MIT Press, Cambridge

    Book  Google Scholar 

  • Rong X, Li Y, Ruan J, Li B (2012) Design and simulation for a hydraulic actuated quadruped robot. J Mech Sci Technol 26(4):1171–1177

    Article  Google Scholar 

  • Rosentrater KA, Balamuralikrishma R (2005) Essential highlights of the history of fluid mechanics. In: Proceedings of 2005 ASEE annual conference and exposition

    Google Scholar 

  • Semini C, Tsagarakis NG, Guglielmino E, Focchi M, Cannella F, Caldwell DG (2011) Design of HyQ – a hydraulically and electrically actuated quadruped robot. IMechE Part I: J Syst Control Eng 225(6):831–849

    Google Scholar 

  • Semini C, Barasuol V, Focchi M, Boelens C, Emara M, Casella S, Villarreal O, Orsolino R, Fink G, Fahmi S, Medrano-Cerda G, Sangiah D, Lesniewski J, Fulton K, Donadon M, Baker M, Caldwell DG (2019) Brief introduction to the quadruped robot HyQReal. In: Italian conference on robotics and intelligent machines (I-RIM)

    Google Scholar 

  • Suzumori K, Faudzi AA (2018) Trends in hydraulic actuators and components in legged and tough robots: a review. Adv Robot 32(9):458–476. https://doi.org/10.1080/01691864.2018.1455606

    Article  Google Scholar 

  • Vacca A, Franzoni G (2021) Hydraulic fluid power: fundamentals, applications, and circuit design. Wiley, Hoboken/Chichester

    Book  Google Scholar 

  • Waldron KJ, McGhee RB (1986) The adaptive suspension vehicle. IEEE Control Syst Mag 6(6):7–12

    Article  Google Scholar 

  • Watton J (2009) Fundamentals of fluid power control, vol 10. Cambridge University Press, Cambridge/New York

    Book  Google Scholar 

  • Zhang Z, Yu H, Cao W, Wang X, Meng Q, Chen C (2021) Design of a semi-active prosthetic knee for transfemoral amputees: gait symmetry research by simulation. Appl Sci 11(12):5328

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Boaventura .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Boaventura, T., Semini, C. (2022). Hydraulic Actuation. In: Ang, M.H., Khatib, O., Siciliano, B. (eds) Encyclopedia of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41610-1_116-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41610-1_116-1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41610-1

  • Online ISBN: 978-3-642-41610-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics