Encyclopedia of Robotics

Living Edition
| Editors: Marcelo H Ang, Oussama Khatib, Bruno Siciliano

Underwater Intervention

  • Giuseppe Casalino
  • Enrico SimettiEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-41610-1_10-1



The act of interacting with the underwater environment with an underwater vehicle-manipulator system.


Underwater vehicle-manipulator systems (UVMSs), as the name implies, are robotized system composed of a vehicle and one or more manipulators. Conversely to autonomous underwater vehicles (AUVs), they are specifically designed to interact with the environment. A conceptual representation of an UVMS is depicted in Fig. 1, where the main frames of the robotic system are highlighted:
This is a preview of subscription content, log in to check access.


  1. Bonin-Font F, Oliver G, Wirth S, Massot M, Negre PL, Beltran JP (2015) Visual sensing for autonomous underwater exploration and intervention tasks. Ocean Eng 93:25–44. https://doi.org/10.1016/j.oceaneng.2014.11.005CrossRefGoogle Scholar
  2. Casalino G, Angeletti D, Bozzo T, Marani G (2001) Dexterous underwater object manipulation via multi-robot cooperating systems. In: IEEE international conference on robotics and automation. Proceedings 2001 ICRA, vol 4. IEEE, pp 3220–3225.  https://doi.org/10.1109/ROBOT.2001.933114
  3. Casalino G, Caccia M, Caselli S, Melchiorri C, Antonelli G, Caiti A, Indiveri G, Cannata G, Simetti E, Torelli S, Sperindè A, Wanderlingh F, Muscolo G, Bibuli M, Bruzzone G, Zereik E, Odetti A, Spirandelli E, Ranieri A, Aleotti J, Lodi Rizzini D, Oleari F, Kallasi F, Palli G, Scarcia U, Moriello L, Cataldi E (2016) Underwater intervention robotics: an outline of the Italian national project MARIS. Mar Technol Soc J 50(4):98–107.  https://doi.org/10.4031/mtsj.50.4.7CrossRefGoogle Scholar
  4. Casalino G, Simetti E, Wanderlingh F (2017) Robotized underwater interventions. In: Fossen TI, Pettersen KY, Nijmeijer H (eds) Sensing and control for autonomous vehicles: applications to land, water and air vehicles. Springer International Publishing, Cham, pp 365–386. https://doi.org/10.1007/978-3-319-55372-6_17CrossRefGoogle Scholar
  5. Choi SK, Takashige GY, Yuh J (1994) Experimental study on an underwater robotic vehicle: Odin. In: Proceedings of IEEE symposium on autonomous underwater vehicle technology (AUV’94). IEEE, pp 79–84.  https://doi.org/10.1109/auv.1994.518610
  6. Cieslak P, Ridao P, Giergiel M (2015) Autonomous underwater panel operation by GIRONA500 UVMS: a practical approach to autonomous underwater manipulation. In: 2015 IEEE international conference on robotics and automation (ICRA). IEEE, pp 529–536.  https://doi.org/10.1109/icra.2015.7139230
  7. Di Lillo PA, Simetti E, De Palma D, Cataldi E, Indiveri G, Antonelli G, Casalino G (2016) Advanced ROV autonomy for efficient remote control in the DexROV project. Mar Technol Soc J 50(4):67–80.  https://doi.org/10.4031/mtsj.50.4.8CrossRefGoogle Scholar
  8. Evans J, Keller K, Smith J, Marty P, Rigaud O (2001) Docking techniques and evaluation trials of the swimmer AUV: an autonomous deployment AUV for work-class ROVs. In: MTS/IEEE conference and exhibition on OCEANS, vol 1. IEEE, pp 520–528.  https://doi.org/10.1109/oceans.2001.968776
  9. Khatib O, Yeh X, Brantner G, Soe B, Kim B, Ganguly S, Stuart H, Wang S, Cutkosky M, Edsinger A, Mullins P, Barham M, Voolstra CR, Salama KN, L’Hour M, Creuze V (2016) Ocean one: a robotic avatar for oceanic discovery. IEEE Robot Autom Mag 23(4): 20–29.  https://doi.org/10.1109/MRA.2016.2613281CrossRefGoogle Scholar
  10. Lane DM, Davies JBC, Casalino G, Bartolini G, Cannata G, Veruggio G, Canals M, Smith C, O’Brien DJ, Pickett M, Robinson G, Jones D, Scott E, Ferrara A, Angelleti D, Coccoli M, Bono R, Virgili P, Pallas R, Gracia E (1997) Amadeus: advanced manipulation for deep underwater sampling. IEEE Robot Autom Mag 4(4):34–45. https://doi.org/10.1109/100.637804CrossRefGoogle Scholar
  11. Lane DM, Maurelli F, Kormushev P, Carreras M, Fox M, Kyriakopoulos K (2012) Persistent autonomy: the challenges of the pandora project. In: Proceedings of IFAC MCMC. Elsevier, pp 268–273. https://doi.org/10.3182/20120919-3-IT-2046.00046CrossRefGoogle Scholar
  12. Lodi Rizzini D, Kallasi F, Aleotti J, Oleari F, Caselli S (2017) Integration of a stereo vision system into an autonomous underwater vehicle for pipe manipulation tasks. Comput Electr Eng (CAEE) 58:560–571. https://doi.org/10.1016/j.compeleceng.2016.08.023CrossRefGoogle Scholar
  13. Marani G, Choi SK (2010) Underwater target localization. IEEE Robot Autom Mag 17(1):64–70.  https://doi.org/10.1109/mra.2010.935793CrossRefGoogle Scholar
  14. Marani G, Choi SK, Yuh J (2008) Underwater autonomous manipulation for intervention missions AUVs. Ocean Eng 36:15–23. https://doi.org/10.1016/j.oceaneng.2008.08.007CrossRefGoogle Scholar
  15. Marty P et al (2004) Alive: an autonomous light intervention vehicle. In: Advances in technology for underwater vehicles conference, oceanology international, vol 2004Google Scholar
  16. Moe S, Antonelli G, Teel AR, Pettersen KY, Schrimpf J (2016) Set-based tasks within the singularity-robust multiple task-priority inverse kinematics framework: general formulation, stability analysis, and experimental results. Front Robot AI 3:16.  https://doi.org/10.3389/frobt.2016.00016
  17. Palli G, Moriello L, Scarcia U, Melchiorri C (2014) Development of an optoelectronic 6-axis force/torque sensor for robotic applications. Sens Actuators A Phys 220(0):333–346. https://doi.org/10.1016/j.sna.2014.09.023CrossRefGoogle Scholar
  18. Petrioli C, Petroccia R, Potter JR, Spaccini D (2015) The sunset framework for simulation, emulation and at-sea testing of underwater wireless sensor networks. Ad Hoc Netw 34:224–238. https://doi.org/10.1016/j.adhoc.2014.08.012CrossRefGoogle Scholar
  19. Petroccia R, Petrioli C, Potter J (2017) Performance evaluation of underwater medium access control protocols: at-sea experiments. IEEE J Ocean Eng.  https://doi.org/10.1109/JOE.2017.2695759
  20. Ribas D, Palomeras N, Ridao P, Carreras M, Mallios A (2012) Girona 500 AUV: from survey to intervention. IEEE/ASME Trans Mechatron 17(1):46–53.  https://doi.org/10.1109/tmech.2011.2174065CrossRefGoogle Scholar
  21. Ribas D, Ridao P, Turetta A, Melchiorri C, Palli G, Fernandez J, Sanz P (2015) I-AUV mechatronics integration for the TRIDENT FP7 project. IEEE/ASME Trans Mechatron 20(5):2583–2592.  https://doi.org/10.1109/TMECH.2015.2395413CrossRefGoogle Scholar
  22. Rigaud V, Coste-Manière È, Aldon MJ, Probert P, Perrier M, Rives P, Simon D, Lang D, Kiener J, Casal A et al (1998) Union: underwater intelligent operation and navigation. IEEE Robot Autom Mag 5(1):25–35. https://doi.org/10.1109/100.667323CrossRefGoogle Scholar
  23. Sanz PJ, Prats M, Ridao P, Ribas D, Oliver G, Ortiz A (2010) Recent progress in the rauvi project: a reconfigurable autonomous underwater vehicle for intervention. In: 2010 proceedings of ELMAR. IEEE, pp 471–474Google Scholar
  24. Sanz PJ, Ridao P, Oliver G, Casalino G, Petillot Y, Silvestre C, Melchiorri C, Turetta A (2013) TRIDENT: an European project targeted to increase the autonomy levels for underwater intervention missions. In: Oceans-San Diego. IEEE, pp 1–10.  https://doi.org/10.23919/OCEANS.2013.6741370
  25. Schempf H, Yoerger D (1992) Coordinated vehicle/manipulator design and control issues for underwater telemanipulation. In: IFAC control applications in marine systems (CAMS 92), Genova, pp 259–267CrossRefGoogle Scholar
  26. Siciliano B, Slotine JJE (1991) A general framework for managing multiple tasks in highly redundant robotic systems. In: Proceedings of fifth international conference on advanced robotics ’Robots in unstructured environments’, 91 ICAR. IEEE, Pisa, pp 1211–1216.  https://doi.org/10.1109/ICAR.1991.240390
  27. Simetti E, Casalino G (2015) Whole body control of a dual arm underwater vehicle manipulator system. Ann Rev Control 40:191–200. https://doi.org/10.1016/j.arcontrol.2015.09.011CrossRefGoogle Scholar
  28. Simetti E, Casalino G (2016) A novel practical technique to integrate inequality control objectives and task transitions in priority based control. J Intell Robot Syst 84(1):877–902. https://doi.org/10.1007/s10846-016-0368-6CrossRefGoogle Scholar
  29. Simetti E, Casalino G (2017) Manipulation and transportation with cooperative underwater vehicle manipulator systems. IEEE J Ocean Eng 42(4):782–799.  https://doi.org/10.1109/joe.2016.2618182CrossRefGoogle Scholar
  30. Simetti E, Casalino G, Torelli S, Sperindé A, Turetta A (2014) Floating underwater manipulation: developed control methodology and experimental validation within the trident project. J Field Robot 31(3):364–385.  https://doi.org/10.1002/rob.21497CrossRefGoogle Scholar
  31. Simetti E, Wanderlingh F, Casalino G, Indiveri G, Antonelli G (2017a) ROBUST project: control framework for deep sea mining exploration. In: MTS/IEEE OCEANS 17, AnchorageGoogle Scholar
  32. Simetti E, Wanderlingh F, Torelli S, Bibuli M, Odetti A, Bruzzone G, Lodi Rizzini D, Aleotti J, Palli G, Moriello L, Scarcia U (2017b) Autonomous underwater intervention: experimental results of the MARIS project. IEEE J Ocean Eng 1–20.  https://doi.org/10.1109/JOE.2017.2733878
  33. Stuart H, Wang S, Khatib O, Cutkosky MR (2017) The ocean one hands: an adaptive design for robust marine manipulation. Int J Robot Res 36(2):150–166. https://doi.org/10.1177/0278364917694723CrossRefGoogle Scholar
  34. Wang H, Rock S, Lees M (1995) Experiments in automatic retrieval of underwater objects with an AUV. In: MTS/IEEE Oceans’95, vol 1. IEEE, pp 366–373.  https://doi.org/10.1109/oceans.1995.526796
  35. Yoerger DR, Schempf H, DiPietro DM (1991) Design and performance evaluation of an actively compliant underwater manipulator for full-ocean depth. J Robot Syst 8(3):371–392.  https://doi.org/10.1002/rob.4620080306CrossRefGoogle Scholar
  36. Youakim D, Ridao P, Palomeras N, Spadafora F, Ribas D, Muzzupappa M (2017) Autonomous underwater free-floating manipulation using moveit! IEEE Robot Autom Mag 24(3):41–51.  https://doi.org/10.1109/MRA.2016.2636369CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DIBRISUniversity of Genova - ISMEGenovaItaly
  2. 2.Interuniversity Research Center on Integrated System for the Marine Environment (ISME) DIBRISUniversity of GenovaGenovaItaly

Section editors and affiliations

  • Gianluca Antonelli
    • 1
  1. 1.University of Cassino and Southern LazioCassinoItaly