Skip to main content

Relativistic Self-Consistent Fields

  • Reference work entry
  • First Online:
Handbook of Relativistic Quantum Chemistry

Abstract

The simplest relativistic computational methods for many-electron systems involve the solution of one-particle Dirac equations for an electron moving in some effective (“mean-field”) potential. This potential depends on the one-particle solutions which describe the electron charge distribution; therefore, such mean-field problems are solved iteratively until self-consistency. The two most important relativistic self-consistent field methods are the relativistic variants of the Hartree-Fock and Kohn-Sham methods, whose computational frameworks have large overlap. In this chapter, the development of these methods for atoms and molecules is sketched. While atomic calculations are usually performed solving differential variational equations, molecular calculations rely on basis set expansion methods. These seemed to be problematic initially, but with kinetically balanced basis sets, smooth convergence is obtained. Most relativistic Kohn-Sham calculations performed today combine relativistic kinematics (the use of Dirac spinors) with nonrelativistic exchange-correlation functionals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swirles B (1935) Relativistic self-consistent field. Proc R Soc Ser A 152:625

    Article  Google Scholar 

  2. Williams AO (1940) A relativistic self-consistent field for Cu. Phys Rev 58:723

    Article  CAS  Google Scholar 

  3. Liberman D, Waber JT, Cromer DT (1965) Self-consistent-field Dirac-Slater wave functions for atoms and ions. I. Comparison with previous calculations. Phys Rev 137:A27

    Google Scholar 

  4. Grant IP (1961) Relativistic self-consistent fields. Proc R Soc Ser A 262:555

    Article  Google Scholar 

  5. Grant IP (1970) Relativistic calculation of atomic structures. Adv Phys 19:747

    Article  CAS  Google Scholar 

  6. Desclaux JP (1973) Relativistic Dirac-Fock expectation values for atoms with atomic numbers Z = 1–120. At Data Nucl Data Tables 12:311

    Article  CAS  Google Scholar 

  7. Grant IP, Quiney HM (1987) Foundations of the relativistic theory of atomic and molecular-structure. Adv At Mol Opt Phys 23:37

    CAS  Google Scholar 

  8. Beier T, Mohr PJ, Persson H, Soff G (1998) Influence of nuclear size on QED corrections in hydrogenlike heavy ions. Phys Rev A 58:954

    Article  CAS  Google Scholar 

  9. Pyykko P, Dyall KG, Csazar AG, Tarczay G, Polyansky OL, Tennyson J (2001) Estimation of Lamb-shift effects for molecules: application to the rotation-vibration spectra of water. Phys Rev A 63:024502

    Article  Google Scholar 

  10. Liu WJ (2012) Perspectives of relativistic quantum chemistry: the negative energy cat smiles. Phys Chem Chem Phys 14:35

    Article  Google Scholar 

  11. Liu W, Lindgren I (2013) Going beyond “no-pair relativistic quantum chemistry”. J Chem Phys 139:014108

    Article  Google Scholar 

  12. Aucar GA (2014) Toward a QFT-based theory of atomic and molecular properties. Phys Chem Chem Phys 16:4420

    Article  CAS  Google Scholar 

  13. Desclaux JP (1975) Multiconfiguration relativistic Dirac-Fock program. Comput Phys Commun 9:31

    Article  Google Scholar 

  14. Mckenzie BJ, Grant IP, Norrington PH (1980) A program to calculate transverse Breit and QED corrections to energy-levels in a multiconfiguration Dirac-Fock environment. Comput Phys Commun 21:233

    Article  Google Scholar 

  15. Froese Fischer C (1978) General multi-configuration Hartree-Fock program. Comput Phys Commun 14:145

    Article  CAS  Google Scholar 

  16. Dyall KG (1986) Transform – a program to calculate transformations between various JJ and LS coupling schemes. Comput Phys Commun 39:141

    Article  CAS  Google Scholar 

  17. Jonsson P, Gaigalas G, Bieron J, Froese Fischer C, Grant IP (2013) New version: GRASP2K relativistic atomic structure package. Comput Phys Commun 184:2197

    Article  Google Scholar 

  18. Reiher M, Hinze J (1999) Self-consistent treatment of the frequency-independent Breit interaction in Dirac-Fock and MCSCF calculations of atomic structures: I. Theoretical considerations. J Phys B-At Mol Opt Phys 32:5489

    Google Scholar 

  19. Quiney HM, Grant IP, Wilson S (1987) The Dirac-equation in the algebraic-approximation. 5. Self–consistent field studies including the Breit interaction. J Phys B-At Mol Opt Phys 20:1413

    Google Scholar 

  20. Havlas Z, Michl J (1999) Ab initio calculation of zero-field splitting and spin-orbit coupling in ground and excited triplets of m-xylylene. J Chem Soc Perkin Trans 2 1999:2299

    Google Scholar 

  21. Parpia FA, Mohanty AK (1992) Relativistic basis-set calculations for atoms with Fermi nuclei. Phys Rev A 46:3735

    Article  CAS  Google Scholar 

  22. Visscher L, Dyall KG (1997) Dirac-Fock atomic electronic structure calculations using different nuclear charge distributions. At Data Nucl Data Tables 67:207

    Article  CAS  Google Scholar 

  23. Tupitsyn II, Shabaev VM, Lopez-Urrutia JRC, Draganic I, Orts RS, Ullrich J (2003) Relativistic calculations of isotope shifts in highly charged ions. Phys Rev A 68:022511

    Article  Google Scholar 

  24. Kim YK (1967) Relativistic self-consistent-field theory for closed-shell atoms. Phys Rev 154:17

    Article  CAS  Google Scholar 

  25. Kagawa T (1980) Multiconfiguration relativistic Hartree-Fock-Roothaan theory for atomic systems. Phys Rev A 22:2340

    Article  CAS  Google Scholar 

  26. Kagawa T (1975) Relativistic Hartree-Fock-Roothaan theory for open-shell atoms. Phys Rev A 12:2245

    Article  CAS  Google Scholar 

  27. Synek M (1964) Analytical relativistic self-consistent field theory. Phys Rev 136:A1552

    Article  Google Scholar 

  28. Malli G, Oreg J (1975) Relativistic self-consistent-field (RSCF) theory for closed-shell molecules. J Chem Phys 63:830

    Article  CAS  Google Scholar 

  29. Matsuoka O, Suzuki N, Aoyama T, Malli G (1980) Relativistic self-consistent-field methods for molecules. 1. Dirac-Fock multiconfiguration self-consistent-field theory for molecules and a single-determinant Dirac-Fock self-consistent-field method for closed-shell linear-molecules. J Chem Phys 73:1320

    Google Scholar 

  30. Mark F, Rosicky F (1980) Analytical relativistic Hartree-Fock equations within scalar basis-sets. Chem Phys Lett 74:562

    Article  CAS  Google Scholar 

  31. Schwarz WHE, Wallmeier H (1982) Basis set expansions of relativistic molecular wave-equations. Mol Phys 46:1045

    Article  CAS  Google Scholar 

  32. Sucher J (1987) Relativistic many-electron Hamiltonians. Phys Scr 36:271

    Article  CAS  Google Scholar 

  33. Mittleman MH (1981) Theory of relativistic effects on atoms – configuration-space Hamiltonian. Phys Rev A 24:1167

    Article  CAS  Google Scholar 

  34. Kutzelnigg W (2012) Solved and unsolved problems in relativistic quantum chemistry. Chem Phys 395:16

    Article  CAS  Google Scholar 

  35. Schwarz WHE, Wechseltrakowski E (1982) The 2 problems connected with Dirac-Breit-Roothaan calculations. Chem Phys Lett 85:94

    Article  CAS  Google Scholar 

  36. Stanton RE, Havriliak S (1984) Kinetic balance – a partial solution to the problem of variational safety in Dirac calculations. J Chem Phys 81:1910

    Article  CAS  Google Scholar 

  37. Dyall KG, Grant IP, Wilson S (1984) Matrix representation of operator products. J Phys B-At Mol Opt Phys 17:493

    Article  CAS  Google Scholar 

  38. Visscher L, Aerts PJC, Visser O, Nieuwpoort WC (1991) Kinetic balance in contracted basis-sets for relativistic calculations. Int J Quantum Chem Quantum Chem Symp 25:131

    Article  CAS  Google Scholar 

  39. Yanai T, Nakajima T, Ishikawa Y, Hirao K (2001) A new computational scheme for the Dirac-Hartree-Fock method employing an efficient integral algorithm. J Chem Phys 114:6526

    Article  CAS  Google Scholar 

  40. Visscher L (1997) Approximate molecular relativistic Dirac-Coulomb calculations using a simple Coulombic correction. Theor Chem Acc 98:68

    Article  CAS  Google Scholar 

  41. Nakajima T, Hirao K (2004) Pseudospectral approach to relativistic molecular theory. J Chem Phys 121:3438

    Article  CAS  Google Scholar 

  42. Belpassi L, Tarantelli F, Sgamellotti A, Quiney HM (2008) Poisson-transformed density fitting in relativistic four-component Dirac-Kohn-Sham theory. J Chem Phys 128:124108

    Article  Google Scholar 

  43. Rajagopal AK, Callaway J (1973) Inhomogeneous electron-gas. Phys Rev B 7:1912

    Article  CAS  Google Scholar 

  44. Engel E (2002) Relativistic density functional theory: foundations and basic formalism. In: Schwerdtfeger P (ed) Relativistic electronic structure theory. Part 1: Fundamentals. Elsevier, Amsterdam, p 523

    Google Scholar 

  45. van Wüllen C (2010) Relativistic density functional theory. In: Barysz M (ed) Relativistic methods for chemists. Springer, Dordrecht, p 191

    Chapter  Google Scholar 

  46. Mayer M, Haeberlen OD, Roesch N (1996) Relevance of relativistic exchange-correlation functionals and of finite nuclei in molecular density-functional calculations. Phys Rev A 54:4775

    Article  CAS  Google Scholar 

  47. Varga S, Engel E, Sepp WD, Fricke B (1999) Systematic study of the Ib diatomic molecules Cu2, Ag2, and Au2 using advanced relativistic density functionals. Phys Rev A 59:4288

    Article  CAS  Google Scholar 

  48. Belpassi L, Storchi L, Quiney HM, Tarantelli F (2011) Recent advances and perspectives in four-component Dirac-Kohn-Sham calculations. Phys Chem Chem Phys 13:12368

    Article  CAS  Google Scholar 

  49. Pestka G, Bylicki M, Karwowski J (2007) Complex coordinate rotation and relativistic Hylleraas-CI: helium isoelectronic series. J Phys B-At Mol Opt Phys 40:2249

    Article  CAS  Google Scholar 

  50. Watanabe Y, Nakano H, Tatewaki H (2010) Effect of removing the no-virtual pair approximation on the correlation energy of the He isoelectronic sequence. II. Point nuclear charge model. J Chem Phys 132:124105

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph van Wüllen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

van Wüllen, C. (2017). Relativistic Self-Consistent Fields. In: Liu, W. (eds) Handbook of Relativistic Quantum Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40766-6_24

Download citation

Publish with us

Policies and ethics