Skip to main content

Labor Share, Capital Share, and Rents: A Macrohistorical Perspective

  • Living reference work entry
  • First Online:
Handbook of Cliometrics

Abstract

This article reviews the literature on value added distribution in a long-run perspective. In so doing, it discusses: (i) the measure of the labor and capital shares; (ii) the set of explanation behind the evolution of those ratios, whether this is due to labor and capital substitution effect, the automation and creation of new tasks, and the evolution of firms market power and markup; (iii) the consequences on inequalities, growth, and welfare. In all cases, historical series are used to enlighten the issue while historical events are proposed to document-specific mechanisms at work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The cost minimization problem is properly solved in Appendix A.2. Notice that results found in (5) and (6) can be reached by setting μ = 1, i.e., there is perfect competition in the products market.

  2. 2.

    See Appendix A.3 for the intermediate steps.

  3. 3.

    Namely Austria, Canada, Finland, France, Germany, Italy, Japan, the Netherlands, Spain, Sweden, the United Kingdom, and the United States.

  4. 4.

    The five instruments in question are military purchases of equipment, vessels, and software plus military R&D spending, and the oil price.

  5. 5.

    Notice that the studies following Barkai’s approach are based on value-added.

Bibliography

  • Acemoglu D (2002) Directed technical change. Rev Econ Stud 69(4):781–810

    Article  Google Scholar 

  • Acemoglu D (2003) Labor and capital-augmenting technical change. J Eur Econ Assoc 1(1):1–37

    Article  Google Scholar 

  • Acemoglu D, Restrepo P (2018) The race between man and machine: implications of technology for growth, factor shares, and employment. Am Econ Rev 108(6):1488–1515

    Article  Google Scholar 

  • Acemoglu D, Restrepo P (2019) Automation and new tasks: how technology displaces and reinstates labor. J Econ Perspect 33(2):3–30

    Article  Google Scholar 

  • Ackerberg DA, Caves K, Frazer G (2015) Identification properties of recent production function estimators. Econometrica 83:2411–2451

    Article  Google Scholar 

  • Aghion P, Howitt P (1992) A model of growth through creative destruction. Econometrica 60(2):323–351

    Article  Google Scholar 

  • Aghion P, Bloom P, Blundell R, Griffith R, Howitt P (2005) Competition and innovation: an inverted-U relationship. Q J Econ 120(2):701–728

    Google Scholar 

  • Allen R (2009) The British Industrial Revolution in global perspective. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Autor D, Dorn D, Katz LF, Patterson C, Van Reenen J (2020) The fall of the labor share and the rise of the superstar firms. Q J Econ 135(2):645–709

    Article  Google Scholar 

  • Barkai S (2020) Declining labor and capital shares. J Financ 75(5):2421–2463

    Article  Google Scholar 

  • Barkai S, Benzell SG (2017) 70 years of US corporate profits. New working paper series n 22; Stigler Center

    Google Scholar 

  • Basu S (2019) Are price-costs markups rising in the United States? A discussion of the evidence. J Econ Perspect 33(3):3–22

    Article  Google Scholar 

  • Bengtsson E, Waldenström D (2018) Capital shares and income inequality: evidence from the Long Run. J Econ Hist 78(3):712–743

    Article  Google Scholar 

  • Bengtsson E, Rubolino E, WaldenstrÃűm D (2020) What determines the capital share over the long run of history? IZA DP No. 13199

    Google Scholar 

  • Bentolila S, Saint-Paul G (2003) Explaining movements in the labor share. BE J Macroecon 3(1):1–33

    Google Scholar 

  • Bergeaud A, Cette G, Lecat R (2018) Productivity trends in advanced countries between 1890 and 2012. Rev Income Wealth 62(3):420–444

    Article  Google Scholar 

  • Budd EC (1960) Factor shares, 1850–1910. In: NBER (ed) Trends in the American Economy in the nineteenth century. Princeton University Press

    Google Scholar 

  • Caballero RJ, Fahri E, Gourinchas PO (2017) Rents, technical change, and risk premia accounting for secular trends in interest rates, returns on capital, earning yields, and factor shares. Am Econ Rev 107(5):614–620

    Article  Google Scholar 

  • Cette G, Koehl L, Philippon T (2019) La part du travail sur le long terme: un dÃl’clin ? Economie et Statistique / Economics and Statistics 510–512:35–51

    Google Scholar 

  • Cobb CW, Douglas PH (1928) A theory of production. Am Econ Rev 18(1):139–165

    Google Scholar 

  • Dao M, Das M, Koczan Z, Lian W (2019) Why is labor receiving a smaller share of global income? Econ Policy 34(100):723–759

    Article  Google Scholar 

  • De Loecker J, Eeckhout J, Unger G (2020) The rise of market power and the macroeconomic implications. Q J Econ 135(2):561–644

    Article  Google Scholar 

  • de Pleijt A, Nuvolari A, Weisdorf J (2020) Human capital formation during the first Industrial Revolution: evidence from the use of steam engines. J Eur Econ Assoc 18(2):829–889

    Article  Google Scholar 

  • Doraszelski U, Jaumandreu J (2018) Measuring the bias of technical change. J Polit Econ 126(5):1027–1084

    Article  Google Scholar 

  • Elsby MWL, Hobijn B, Sahin A (2013) The decline of the U.S. labor share. Brook Pap Econ Act 44(2):1–52

    Article  Google Scholar 

  • Foster L, Haltiwanger J, Tuttle C (2022) Rising markups or changing technology? NBER Working Paper 30491

    Google Scholar 

  • Goldin C, Katz LF (2008) The race between education and technology. Belknap Press, Harvard

    Google Scholar 

  • Gutiérrez G (2017) Investigating global labor and profit shares. 2017 mimeo

    Google Scholar 

  • Guitérrez G, Philippon T (2017a) Declining competition and investment in the U.S. NBER Working Paper: 23583

    Google Scholar 

  • Guitérrez G, Philippon T (2017b) Investment-less growth: an empirical investigation. Brook Pap Econ Act 48(3):89–169

    Article  Google Scholar 

  • Guitérrez G, Philippon T (2023) How European markets become free: a study of institutional drift. J Eur Assoc 21(1):251–292

    Article  Google Scholar 

  • Habakkuk HJ (1962) American and British technology in the nineteenth century. Cambridge University Press, London

    Google Scholar 

  • Hall RE (2018) New evidence on market power, profit, concentration, and the role of mega-firms in the US economy. 2018 mimeo

    Google Scholar 

  • Hall RE, Jorgenson DE (1967) Tax policy and investment behavior. Am Econ Rev 57(3):391–414

    Google Scholar 

  • Hulten CR (1992) Growth accounting when technical change is embodied in capital. Am Econ Rev 82(4):964–980

    Google Scholar 

  • Jordá O, Knoll K, Kuvshinov D, Schularick M, Taylor AM (2019) The rate of return on everything, 1870–2015. Q J Econ 134(3):1225–1298

    Google Scholar 

  • Jorgenson DE (1963) Capital theory and investment behavior. Am Econ Rev 53(2):247–259

    Google Scholar 

  • Karabarbounis L, Neiman B (2014) The global decline of the labor share. Q J Econ 129(1):61–103

    Article  Google Scholar 

  • Karabarbounis L, Neiman B (2018) Accounting for factorless income. NBER Macroecon Annu 33:167–228

    Article  Google Scholar 

  • Keynes JM (1939) Relative movements of real wages and output. Econ J 49(193):34–51

    Article  Google Scholar 

  • Knoblach M, Roessler M, Zwerschke P (2020) The elasticity of substitution between capital and labour in the US economy: a meta-regression analysis. Oxf Bull Econ Stat 82(1):62–82

    Article  Google Scholar 

  • Mehra R, Prescott EC (1985) The equity premium: a puzzle. J Monet Econ 15(2):145–161

    Article  Google Scholar 

  • Muck J, McAdam P, Growiec J (2018) Will the “true” labor share stand up? An applied survey on labor share measures. J Econ Surv 32(4):961–984

    Article  Google Scholar 

  • North D, Weingast B (1989) Constitutions and commitment: the evolution of institutions governing public choice in seventeenth-century England. J Econ Hist 49(4):803–832

    Article  Google Scholar 

  • Olley GS, Pakes A (1996) The dynamics of productivity in the telecommunications equipment industry. Econometrica 64(6):1263–1297

    Article  Google Scholar 

  • Olmstead A, Rhode P (2001) Reshaping the landscape: the impact and diffusion of the tractor in American agriculture, 1910–1960. J Econ Hist 61(3):663–698

    Article  Google Scholar 

  • Philippon T (2019) The great reversal: how America gave up on free markets. Harvard University Press, Harvard

    Book  Google Scholar 

  • Piketty (2013) Le capital au XXIème siècle. Seuil, Paris

    Google Scholar 

  • Piketty T, Zucman G (2014) Capital is back: wealth-income ratios in rich countries, 1700–2010. Q J Econ 129(3):1155–1210

    Article  Google Scholar 

  • Pomeranz K (2000) The great divergence: China, Europe, and the making of the modern world economy. Princeton University Press, Princeton

    Book  Google Scholar 

  • Rasmussen WD (1982) The mechanization of agriculture. Sci Am 247(3):76–89

    Article  Google Scholar 

  • Schwellnus C, Geva A, Pak M, Veiel R (2019) Gig economy platforms: boone or bane? OECD 2019; Economics Department Working Paper 1550

    Google Scholar 

  • Solow RM (1957) Technical change and the aggregate production function. Rev Econ Stat 39(3):312–320

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Bazot .

Editor information

Editors and Affiliations

Appendix

Appendix

Production Function and Elasticity of Substitution Value

Recall (4) and set \( \rho =\frac{\sigma -1}{\sigma } \). This gives:

$$ Y={\left[\left(1-\alpha \right){\left({A}_LL\right)}^{\rho }+\alpha {\left({A}_KK\right)}^{\rho}\right]}^{\frac{1}{\rho }} $$
(21)

The Cobb-Douglas case: ρ → 0

Applying a monotonic (log) transformation to our production function gives:

$$ \ln (Y)=\frac{\ln \left[\left(1-\alpha \right){\left({A}_LL\right)}^{\rho }+\alpha {\left({A}_KK\right)}^{\rho}\right]}{\rho } $$
(22)

Remembering that, in a Cobb-Douglas function, the elasticity of substitution is 1, it can be approached by the limit of our CES when ρ tends toward 0:

$$ \underset{\rho \to 0}{\lim}\ln (Y)=\underset{\rho \to 0}{\lim}\frac{\ln \left[\left(1-\alpha \right){\left({A}_LL\right)}^{\rho }+\alpha {\left({A}_KK\right)}^{\rho}\right]}{\rho } $$

Which leads us to the undetermined form \( \frac{0}{0} \). By L’Hôpital’s rule:

$$ \underset{\rho \to 0}{\lim}\ln (Y)=\underset{\rho \to 0}{\lim}\frac{\left(1-\alpha \right){\left({A}_LL\right)}^{\rho}\ln {\left({A}_LL\right)}^{\rho }+\alpha {\left({A}_KK\right)}^{\rho}\ln \left({A}_KK\right)}{\left(1-\alpha \right){\left({A}_LL\right)}^{\rho }+\alpha {\left({A}_KK\right)}^{\rho }} $$
$$ \underset{\rho \to 0}{\lim}\ln (Y)=\frac{\left(1-\alpha \right)\ln \left({A}_LL\right)+\alpha \ln \left({A}_KK\right)}{1-\alpha +\alpha } $$

Applying the inverse transformation operated in (21), we get the standard Cobb-Douglas production function:

$$ \underset{\rho \to 0}{\lim }Y={\left({A}_LL\right)}^{1-\alpha }{\left({A}_KK\right)}^{\alpha } $$
(23)

The Leontieff case: ρ → −∞

Starting from (21), and remembering that the elasticity of substitution in a Leontieff function is 0, the limit of our CES, when ρ tends to −∞ gives:

$$ \underset{\rho \to -\infty }{\lim}\ln (Y)=\underset{\rho \to -\infty }{\lim}\frac{\ln \left[\left(1-\alpha \right){\left({A}_LL\right)}^{\rho }+\alpha {\left({A}_KK\right)}^{\rho}\right]}{\rho } $$

Which is again an undetermined form \( \frac{\infty }{\infty } \). Then by L’hôpital’s rule:

$$ {\displaystyle \begin{array}{c}\underset{\rho \to -\infty }{\lim}\ln (Y)=\underset{\rho \to -\infty }{\lim}\frac{\left(1-\alpha \right){\left({A}_LL\right)}^{\rho}\ln \left({A}_LL\right)+\alpha {\left({A}_KK\right)}^{\rho}\ln \left({A}_KK\right)}{\left(1-\alpha \right){\left({A}_LL\right)}^{\rho }+\alpha {\left({A}_KK\right)}^{\rho }}\\ {}\underset{\rho \to -\infty }{\lim}\ln (Y)=\underset{\rho \to -\infty }{\lim}\left\{\frac{\ln \left({A}_KK\right)\left[\alpha {\left({A}_KK\right)}^{\rho }+\left(1-\alpha \right){\left({A}_LL\right)}^{\rho}\right]}{\left(1-\alpha \right){\left({A}_LL\right)}^{\rho }+\alpha {\left({A}_KK\right)}^{\rho }}\right.\kern1.2em \\ {}\kern6em \left.+\frac{\left(1-\alpha \right)\ln \left({A}_LL\right){\left({A}_LL\right)}^{\rho }-\left(1-\alpha \right)\ln \left({A}_KK\right){\left({A}_LL\right)}^{\rho }}{\left(1-\alpha \right){\left({A}_LL\right)}^{\rho }+\alpha {\left({A}_KK\right)}^{\rho }}\right\}\\ {}\underset{\rho \to -\infty }{\lim}\ln (Y)=\underset{\rho \to \infty }{\lim}\left\{\ln \left({A}_KK\right)+\left(1-\alpha \right)\frac{\ln \left({A}_LL\right){\left({A}_LL\right)}^{\rho }-\ln \left({A}_KK\right){\left({A}_LL\right)}^{\rho }}{\left(1-\alpha \right){\left({A}_LL\right)}^{\rho }+\alpha {\left({A}_KK\right)}^{\rho }}\right\}\\ {}\underset{\rho \to -\infty }{\lim}\ln (Y)=\underset{\rho \to -\infty }{\lim}\left\{\ln \left({A}_KK\right)+\left(1-\alpha \right)\frac{\ln \left({A}_LL\right)-\ln \left({A}_KK\right)}{\left(1-\alpha \right)+\alpha {\left(\frac{A_KK}{A_LL}\right)}^{\rho }}\right\}\end{array}} $$

When AKK > ALL, \( \underset{\rho \to -\infty }{\lim }{\left(\frac{A_KK}{A_LL}\right)}^{\rho }=0 \), and \( \underset{\rho \to -\infty }{\lim}\ln (Y)=\ln \left({A}_LL\right) \). On the contrary, if AKK < ALL, \( \underset{\rho \to -\infty }{\lim }{\left(\frac{A_KK}{A_LL}\right)}^{\rho }=+\infty \), and \( \underset{\rho \to -\infty }{\lim}\;\ln (Y)=\ln \left({A}_KK\right) \). In a nutshell:

$$ \underset{\rho \to -\infty }{\lim }Y=\min \left\{{A}_LL,{A}_KK\right\} $$
(24)

Cost-minimization Problem

Assuming the aggregate production function is (4), and taking a potential markup in the economy, the cost-minimization problem is:

$$ {\displaystyle \begin{array}{l}\underset{L,K}{\mathbf{\min}}\kern1em \left\{C(Y)= wL+ rK\right\}\\ {}\ \mathrm{s}.\mathrm{t}.\kern1em Y={\left[\left(1-\alpha \right){\left({A}_LL\right)}^{\frac{\sigma -1}{\sigma }}+\alpha {\left({A}_KK\right)}^{\frac{\sigma -1}{\sigma }}\right]}^{\frac{\sigma }{\sigma -1}}\end{array}} $$

Where C(Y) is the aggregate total cost in the economy, and the price P is the numeraire, such that PY = Y. By defining the following Lagrangian function:

$$ \mathrm{\mathcal{L}}\left(L,K,\uplambda \right)=\left( wN+ rK\right)-\uplambda \left[{\left[\left(1-\alpha \right){\left({A}_LL\right)}^{\frac{\sigma -1}{\sigma }}+\alpha {\left({A}_KK\right)}^{\frac{\sigma -1}{\sigma }}\right]}^{\frac{\sigma }{\sigma -1}}-Y\right] $$

where λ is the Lagrange multiplier, the first-order conditions lead to:

$$ \frac{\mathrm{\partial \mathcal{L}}\left(L,K,\uplambda \right)}{\partial N}=0\iff \kern1em w=\uplambda \left[\left(1-\alpha \right){A}_L^{\frac{\sigma -1}{\sigma }}{L}^{\frac{-1}{\sigma }}{\left[\left(1-\alpha \right){\left({A}_LL\right)}^{\frac{\sigma -1}{\sigma }}+\alpha {\left({A}_KK\right)}^{\frac{\sigma -1}{\sigma }}\right]}^{\frac{1}{\sigma -1}}\right] $$
(25)
$$ \frac{\mathrm{\partial \mathcal{L}}\left(L,K,\uplambda \right)}{\partial K}=0\iff \kern1em r=\uplambda \left[\alpha {A}_K^{\frac{\sigma -1}{\sigma }}{K}^{\frac{-1}{\sigma }}{\left[\left(1-\alpha \right){\left({A}_LL\right)}^{\frac{\sigma -1}{\sigma }}+\alpha {\left({A}_KK\right)}^{\frac{\sigma -1}{\sigma }}\right]}^{\frac{1}{\sigma -1}}\right] $$
(26)
$$ \frac{\mathrm{\partial \mathcal{L}}\left(L,K,\uplambda \right)}{\mathrm{\partial \uplambda }}=0\iff \kern1em Y={\left[\left(1-\alpha \right){\left({A}_LL\right)}^{\frac{\sigma -1}{\sigma }}+\alpha {\left({A}_KK\right)}^{\frac{\sigma -1}{\sigma }}\right]}^{\frac{\sigma }{\sigma -1}} $$
(27)

By the Envelope theorem, we have:

$$ {\left.\frac{\mathrm{\partial \mathcal{L}}}{\partial Y}\right|}_{\begin{array}{c}L={L}^{\ast }(Y)\\ {}\phantom{\rule{0ex}{0.3em}}K={K}^{\ast }(Y)\\ {}\phantom{\rule{0ex}{0.3em}}\uplambda ={\uplambda}^{\ast }(Y)\end{array}}={\uplambda}^{\ast }(Y) $$
(28)

Equation (28) shows that the Lagrange multiplier can be interpreted as the rate at which the optimal value of total costs (C(Y)) changes with respect to changes in the quantities produced (Y). In other words, λ are the marginal costs. Recording that the markup of price over marginal costs is the price divided by the marginal cost:

$$ \mu =\frac{P}{C^{\prime }(Y)} $$
(29)

and that P = 1, there is a direct link between the Lagrange multiplier (λ) and the markup (μ):

$$ \uplambda =\frac{1}{\mu } $$
(30)

Accordingly, we can rewrite Eqs. (25) and (26) as (7) and (8).

Factor Shares Derivation

For the labor share:

$$ {\displaystyle \begin{array}{c}{S}_L=\frac{1}{\mu}\left(1-\alpha \right){A}_L^{\frac{\sigma -1}{\sigma }}{\left(\frac{L}{Y}\right)}^{\frac{\sigma -1}{\sigma }}\\ {}=\frac{1}{\mu}\left(1-\alpha \right){A}_L^{\frac{\sigma -1}{\sigma }}{L}^{\frac{\sigma -1}{\sigma }}{\left[{\left[\left(1-\alpha \right){\left({A}_LL\right)}^{\frac{\sigma -1}{\sigma }}+{\left({A}_KK\right)}^{\frac{\sigma -1}{\sigma }}\right]}^{\frac{\sigma }{\sigma -1}}\right]}^{\frac{-\sigma -1}{\sigma }}\\ {}=\frac{1}{\mu}\left(1-\alpha \right){\left({A}_LL\right)}^{\frac{\sigma -1}{\sigma }}{\left[\left(1-\alpha \right){\left({A}_LL\right)}^{\frac{\sigma -1}{\sigma }}+{\left({A}_KK\right)}^{\frac{\sigma -1}{\sigma }}\right]}^{-1}\\ {}=\frac{1}{\mu}\frac{\left(1-\alpha \right){\left({A}_LL\right)}^{\frac{\sigma -1}{\sigma }}}{\left(1-\alpha \right){\left({A}_LL\right)}^{\frac{\sigma -1}{\sigma }}+\alpha {\left({A}_KK\right)}^{\frac{\sigma -1}{\sigma }}}\\ {}=\frac{1}{\mu}\frac{1}{\frac{\left(1-\alpha \right){\left({A}_LL\right)}^{\frac{\sigma -1}{\sigma }}+\alpha {\left({A}_KK\right)}^{\frac{\sigma -1}{\sigma }}}{\left(1-\alpha \right){\left({A}_LL\right)}^{\frac{\sigma -1}{\sigma }}}}\\ {}=\frac{1}{\mu}\frac{1}{1+\left(\frac{\alpha }{1-\alpha}\right){\left(\frac{A_KK}{A_LL}\right)}^{\frac{\sigma -1}{\sigma }}}\end{array}} $$

For the capital share:

$$ {\displaystyle \begin{array}{c}{S}_K=\frac{1}{\mu}\left(1-\alpha \right){A}_K^{\frac{\sigma -1}{\sigma }}{\left(\frac{K}{Y}\right)}^{\frac{\sigma -1}{\sigma }}\\ {}=\frac{1}{\mu}\left(1-\alpha \right){A}_K^{\frac{\sigma -1}{\sigma }}{K}^{\frac{\sigma -1}{\sigma }}{\left[{\left[\left(1-\alpha \right){\left({A}_LL\right)}^{\frac{\sigma -1}{\sigma }}+{\left({A}_KK\right)}^{\frac{\sigma -1}{\sigma }}\right]}^{\frac{\sigma }{\sigma -1}}\right]}^{\frac{-\sigma -1}{\sigma }}\\ {}=\frac{1}{\mu}\left(1-\alpha \right){\left({A}_KK\right)}^{\frac{\sigma -1}{\sigma }}{\left[\left(1-\alpha \right){\left({A}_LL\right)}^{\frac{\sigma -1}{\sigma }}+{\left({A}_KK\right)}^{\frac{\sigma -1}{\sigma }}\right]}^{-1}\\ {}=\frac{1}{\mu}\frac{\left(1-\alpha \right){\left({A}_KK\right)}^{\frac{\sigma -1}{\sigma }}}{\left(1-\alpha \right){\left({A}_LL\right)}^{\frac{\sigma -1}{\sigma }}+\alpha {\left({A}_KK\right)}^{\frac{\sigma -1}{\sigma }}}\\ {}=\frac{1}{\mu}\frac{1}{\frac{\left(1-\alpha \right){\left({A}_LL\right)}^{\frac{\sigma -1}{\sigma }}+\alpha {\left({A}_KK\right)}^{\frac{\sigma -1}{\sigma }}}{\left(1-\alpha \right){\left({A}_KK\right)}^{\frac{\sigma -1}{\sigma }}}}\\ {}=\frac{1}{\mu}\frac{1}{1+\left(\frac{\alpha }{1-\alpha}\right){\left(\frac{A_LL}{A_KK}\right)}^{\frac{\sigma -1}{\sigma }}}\end{array}} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bazot, G., Guerreiro, D. (2023). Labor Share, Capital Share, and Rents: A Macrohistorical Perspective. In: Diebolt, C., Haupert, M. (eds) Handbook of Cliometrics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40458-0_95-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40458-0_95-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40458-0

  • Online ISBN: 978-3-642-40458-0

  • eBook Packages: Springer Reference Economics and FinanceReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics