Advertisement

Major Operational Ensemble Prediction Systems (EPS) and the Future of EPS

  • Roberto Buizza
  • Jun Du
  • Zoltan Toth
  • Dingchen Hou
Living reference work entry

Abstract

Since the early 1990s, ensemble methods have been increasingly used to address predictability issues, and provide estimates of forecast uncertainties, e.g., in the form of a range of forecast scenarii or of probabilities of occurrence of weather events. Although there is an overall agreement on the main objectives of ensemble-based, probabilistic prediction, different methods have been followed to develop ensemble systems. In this chapter, we will review the methods followed at the major weather prediction centres to develop global ensembles, and we will highlight the links between the method followed and the ensemble forecast performance. The material presented in this chapter is based on the operational, global, medium-range ensembles operational at the time of writing (2014).

Keywords

Ensemble prediction Predictability Probabilistic forecasting Forecast uncertainty 

References

  1. J. Barkmeijer, R. Buizza, T.N. Palmer, 3D-Var Hessian singular vectors and their potential use in the ECMWF ensemble prediction system. Q. J. R. Meteorol. Soc. 125, 2333–2351 (1999)CrossRefGoogle Scholar
  2. J. Barkmeijer, R. Buizza, T.N. Palmer, K. Puri, J.-F. Mahfouf, Tropical singular vectors computed with linearized diabatic physics. Q. J. R. Meteorol. Soc. 127, 685–708 (2001)CrossRefGoogle Scholar
  3. C.H. Bishop, B.J. Etherton, S.J. Majumdar, Adaptive sampling with the ensemble transform kalman filter. Part I: Theoretical aspects. Mon. Weather Rev. 129, 420–436 (2001)CrossRefGoogle Scholar
  4. G. Boffetta, P. Guliani, G. Paladin, A. Vulpiani, An extension of the Lyapunov analysis for the predictability problem. J. Atmos. Sci. 55, 3409–3416 (1998)CrossRefGoogle Scholar
  5. P. Bougeault, Z. Toth, C. Bishop, B. Brown, D. Burridge, D. Chen, E. Ebert, M. Fuentes, T. Hamill, K. Mylne, J. Nicolau, T. Paccagnella, Y.-Y. Park, D. Parsons, B. Raoult, D. Schuster, P. Silva Dias, R. Swinbank, Y. Takeuchi, W. Tennant, L. Wilson, S. Worley, The THORPEX interactive grand global ensemble (TIGGE). Bull. Am. Meteorol. Soc. 91, 1059–1072 (2010)CrossRefGoogle Scholar
  6. W. Bourke, T. Hart, P. Steinle, R. Seaman, G. Embery, M. Naughton, L. Rikus, Evolution of the bureau of meteorology’s global assimilation and prediction system. Part 2: Resolution enhancements and case studies. Aust. Meteorol. Mag. 44, 19–40 (1995)Google Scholar
  7. W. Bourke, R. Buizza, M. Naughton, Performance of the ECMWF and the BoM ensemble systems in the Southern Hemisphere. Mon. Weather Rev. 132, 2338–2357 (2004)CrossRefGoogle Scholar
  8. N.E. Bowler, A. Arribas, K.R. Mylne, K.B. Robertson, Numerical Weather Prediction: The MOGREPS Short-Range Ensemble Prediction System. Part I: System Description. UK Met. Office NWP Technical Report No. 497 (2007), p. 18Google Scholar
  9. N.E. Bowler, A. Arribas, K.R. Mylne, K.B. Robertson, G.J. Shutts, The MOGREPS short-range ensemble prediction system. Q. J. R. Meteol. Soc. 134, 703–722 (2008)CrossRefGoogle Scholar
  10. D.R. Bright, S.L. Mullen, Short-range ensemble forecasts of precipitation during the southwest monsoon. Weather Forecast. 17, 1080–1100 (2002)CrossRefGoogle Scholar
  11. R. Buizza, T.N. Palmer, The singular vector structure of the atmospheric general circulation. J. Atmos. Sci. 52, 1434–1456 (1995)CrossRefGoogle Scholar
  12. R. Buizza, M. Miller, T.N. Palmer, Stochastic representation of model uncertainties in the ECMWF EPS. Q. J. R. Meteorol. Soc. 125, 2887–2908 (1999)CrossRefGoogle Scholar
  13. R. Buizza, P.L. Houtekamer, Z. Toth, G. Pellerin, M. Wei, Y. Zhu, A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Weather Rev. 133, 1076–1097 (2005)CrossRefGoogle Scholar
  14. R. Buizza, J.-R. Bidlot, N. Wedi, M. Fuentes, M. Hamrud, G. Holt, F. Vitart, The new ECMWF VAREPS (variable resolution ensemble prediction system). Q. J. R. Meteorol. Soc. 133, 681–695 (2007)CrossRefGoogle Scholar
  15. R. Buizza, M. Leutbecher, L. Isaksen, Potential use of an ensemble of analyses in the ECMWF ensemble prediction system. Q. J. R. Meteorol. Soc. 134, 2051–2066 (2008)CrossRefGoogle Scholar
  16. M.M. Coutinho, Ensemble prediction using principal-component-based perturbations. Thesis in Meteorology, National Institute for Space Research (INPE), 1999, pp. 136 (in Portuguese)Google Scholar
  17. T. Gneiting, A.E. Raftery, A.H. Westweld III, T. Goldman, Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Weather. Rev. 133, 1098–1118 (2005)CrossRefGoogle Scholar
  18. T.-Y. Goo, S.-O. Moon, J.-Y. Cho, H.-B. Cheong, W.-J. Lee, Preliminary results of medium-range ensemble prediction at KMA: Implementation and performance evaluation as of 2001. Korean J. Atmos. Sci. 6, 27–36 (2003)Google Scholar
  19. M.E.B. Gray, G.J. Shutts, A Stochastic Scheme for Representing Convectively Generated Vorticity Sources in General Circulation Models. APR Turbulence and Diffusion Note No. 285. (Met Office, FitzRoy Road, Exeter EX1 3PB, UK, 2002)Google Scholar
  20. R. Hagedorn, R. Buizza, M.T. Hamill, M. Leutbecher, T.N. Palmer, Comparing TIGGE multi-model forecasts with re-forecast calibrated ECMWF ensemble forecasts. Q. J. R. Meteorol. Soc. 138, 1814–1827 (2012)CrossRefGoogle Scholar
  21. T.M. Hamill, J.S. Whitaker, Ensemble calibration of 500 hPa geopotential height and 850 hPa and 2-meter temperatures using re-forecasts. Mon. Weather. Rev. 135, 3273–3280 (2007)CrossRefGoogle Scholar
  22. D. Hou, Z. Toth, Y. Zhu, W. Yang, Impact of a stochastic perturbation scheme on NCEP global ensemble forecast system. In Proceedings of the 19th AMS Conference on Probability and Statistics, 21–24 January 2008, New Orleans, Louisiana. (2008)Google Scholar
  23. P.L. Houtekamer, L. Lefaivre, Using ensemble forecasts for model validation. Mon. Weather. Rev. 125, 2416–2426 (1997)CrossRefGoogle Scholar
  24. P.L. Houtekamer, L. Lefaivre, J. Derome, H. Ritchie, H.L. Mitchell, A system simulation approach to ensemble prediction. Mon. Weather. Rev. 124, 1225–1242 (1996)CrossRefGoogle Scholar
  25. P.L. Houtekamer, H.L. Mitchell, X. Deng, Model error representation in an operational ensemble Kalman filter. Mon. Weather. Rev. 137, 2126–2143 (2009)CrossRefGoogle Scholar
  26. P.L. Houtekamer, X. Deng, H.L. Mitchell, S.-J. Baek, N. Gagnon, Higher resolution in an operational ensemble Kalman filter. Mon. Weather. Rev. 142, 1143–1162 (2014)CrossRefGoogle Scholar
  27. L. Isaksen, M. Bonavita, R. Buizza, M. Fisher, J. Haseler, M. Leutbecher, L. Raynaud, Ensemble of data assimilations at ECMWF. ECMWF Research Department Technical Memorandum No. 636 (2010). Available from ECMWF, Shinfield Park, Reading RG2-9AX (see also http://old.ecmwf.int/publications/)
  28. P. Janssen, J.-R. Bidlot, S. Abdalla, H. Hersbach, Progress in ocean wave forecasting at ECMWF. ECMWF Research Department Technical Memorandum No. 478 (2005). Available from ECMWF, Shinfield Park, Reading RG2-9AX (see also http://old.ecmwf.int/publications/)
  29. P.A.E.M. Janssen, O. Breivik, K. Mogensen, F. Vitart, M. Balmaseda, J.-R. Bidlot, S. Keeley, M. Leutbecher, L. Magnusson, F. Molteni, Air-sea interaction and surface waves. ECMWF Research Department Technical Memorandum No. 712 (2013). Available from ECMWF, Shinfield Park, Reading RG2-9AX (see also http://old.ecmwf.int/publications/)
  30. J. Kai, H. Kim, Characteristics of initial perturbations in the ensemble prediction system of the Korea Meteorological Administration. Weather Forecast 29, 563–581 (2014).  https://doi.org/10.1175/WAF-D-13-00097.1CrossRefGoogle Scholar
  31. M. Leutbecher, T.N. Palmer, Ensemble forecasting. J. Comput. Phys. 227, 3515–3539 (2008)CrossRefGoogle Scholar
  32. J.W.B. Lin, J.D. Neelin, Influence of a stochastic moist convective parameterization on tropical climate variability. Geophys. Res. Lett. 27, 3691–3694 (2000)CrossRefGoogle Scholar
  33. K. Mogensen, M. Alonso Balmaseda, A. Weaver, The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for System 4. ECMWF Research Department Technical Memorandum No. 668 (2012). Available from ECMWF, Shinfield Park, Reading RG2-9AX (see also http://old.ecmwf.int/publications/)
  34. F. Molteni, R. Buizza, T.N. Palmer, T. Petroliagis, The ECMWF ensemble prediction system: Methodology and validation. Q. J. R. Meteorol. Soc. 122, 73–119 (1996)CrossRefGoogle Scholar
  35. T.N. Palmer, F. Molteni, R. Mureau, R. Buizza, P. Chapelet, J. Tribbia, Ensemble prediction, in Proceedings of the ECMWF Seminar on Validation of Models Over Europe, Vol. 1 (ECMWF, Shinfield Park, 1993), 285 pp. Available from ECMWF, Shinfield Park, Reading RG2-9AX, UKGoogle Scholar
  36. T.N. Palmer, R. Buizza, F. Doblas-Reyes, T. Jung, M. Leutbecher, G.J. Shutts, M. Steinheimer, A. Weisheimer, Stochastic parameterization and model uncertainty. ECMWF Research Department Technical Memorandum No. 598 (2009), p. 42. Available from ECMWF, Shinfield Park, Reading RG2-9AX, UKGoogle Scholar
  37. Y.-Y. Park, R. Buizza, M. Leutbecher, TIGGE: Preliminary results on comparing and combining ensembles. Q. J. R. Meteorol. Soc. 134, 2029–2050 (2008)CrossRefGoogle Scholar
  38. G. Shutts, A kinetic energy backscatter algorithm for use in ensemble prediction systems. Q. J. R. Meteorol. Soc. 131, 3079–3100 (2005)CrossRefGoogle Scholar
  39. X. Su, H. Yuan, Y. Zhu, Y. Luo, Y. Wang, Evaluation of TIGGE ensemble predictions of Northern Hemisphere summer precipitation during 2008–2012. J. Geophys. Res. Atmos. 119, 7292 (2014). (in publication)CrossRefGoogle Scholar
  40. Z. Toth, E. Kalnay, Ensemble forecasting at NMC: The generation of perturbations. Bull. Am. Meteorol. Soc. 74, 2317–2330 (1993)CrossRefGoogle Scholar
  41. Z. Toth, E. Kalnay, Ensemble forecasting at NCEP and the breeding method. Mon. Weather Rev. 125, 3297–3319 (1997)CrossRefGoogle Scholar
  42. F. Vitart, Evolution of ECMWF sub-seasonal forecast skill scores over the past 10 years. ECMWF Research Department Technical Memorandum No. 694 (2013), p. 28. Available from ECMWF, Shinfield Park, Reading RG2-9AX, UKGoogle Scholar
  43. F. Vitart, R. Buizza, M. Alonso Balmaseda, G. Balsamo, J.R. Bidlot, A. Bonet, M. Fuentes, A. Hofstadler, F. Molteni, T.N. Palmer, The new VAREPS-monthly forecasting system: A first step towards seamless prediction. Q. J. R. Meteorol. Soc. 134, 1789–1799 (2008)CrossRefGoogle Scholar
  44. X. Wang, C.H. Bishop, S.J. Julier, Which is better, an ensemble of positive/negative pairs or a centered spherical simplex ensemble? Mon. Weather Rev. 132, 1590–1605 (2004)CrossRefGoogle Scholar
  45. M. Wei, Z. Toth, R. Wobus, Y. Zhu, C. Bishop, X. Wang, Ensemble transform Kalman filter-based ensemble perturbations in an operational global prediction system at NCEP. Tellus A 58, 28–44 (2006)CrossRefGoogle Scholar
  46. M. Wei, Z. Toth, R. Wobus, Y. Zhu, Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus A 60, 62–79 (2008)CrossRefGoogle Scholar
  47. M. Yamaguchi, S.J. Majumdar, Using TIGGE data to diagnose initial perturbations and their growth for tropical cyclone ensemble forecasts. Mon. Wea. Rev. 138, 3634–3655 (2010)CrossRefGoogle Scholar
  48. Z. Zhang, T.N. Krishnamurti, A perturbation method for hurricane ensemble predictions. Mon. Weather Rev. 127, 447–469 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Roberto Buizza
    • 1
  • Jun Du
    • 2
  • Zoltan Toth
    • 3
  • Dingchen Hou
    • 4
  1. 1.European Centre for Medium Range Weather ForecastsReadingUK
  2. 2.Environmental Modeling Center/ National Centers for Environmental PredictionNOAACollege ParkUSA
  3. 3.Global Systems DivisionEarth System Research Laboratory, National Oceanic and Atmospheric AdministrationBoulderUSA
  4. 4.SAIC at NOAA/NWS/NCEP/EMCCamp SpringsUSA

Section editors and affiliations

  • Huiling Yuan
    • 1
  • Zoltan Toth
    • 2
  1. 1.School of Atmospheric Sciences, Nanjing UniversityNanjingChina
  2. 2.Global Systems DivisionEarth System Research Laboratory, National Oceanic and Atmospheric AdministrationBoulderUSA

Personalised recommendations