Primate Origins and Supraordinal Relationships: Morphological Evidence

  • Mary T. Silcox
  • Eric J. Sargis
  • Jonathan I. Bloch
  • Doug M. Boyer
Reference work entry


There are five major scenarios that have been advanced to account for the early events in the origination of the order Primates: a transition from terrestriality to arboreality, the adoption of a grasp-leaping mode of locomotion, the evolution of features for visual predation, an adaptation to terminal branch feeding occurring during angiosperm diversification, or a combination involving terminal branch feeding followed by visual predation. These hypotheses are assessed using both neontological and fossil data. Of the five scenarios, the angiosperm diversification hypothesis is not contradicted by modern data and is found to be the most consistent with the fossil record. In particular, the evolution of features for manual grasping and dental processing of fruit in the earliest primates (primitive plesiadapiforms), and the subsequent development of features for better grasping and more intense frugivory in the common ancestor of Euprimates and Plesiadapoidea, is consistent with a close relationship between early primate and angiosperm evolution. All the other scenarios are less consistent with the pattern of trait acquisition through time observed in the fossil record. Consideration of non-euprimates (e.g., scandentians and plesiadapiforms) is found to be essential to viewing primate origins as a series of incremental steps rather than as an event.


Fossil Record Terminal Branch Primate Origin Order Primate Visual Predation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Our thanks to JG Fleagle, SGB Chester, PD Gingerich, KD Rose, FS Szalay, and AC Walker for conversations relevant to this chapter. We thank Annette Zitzmann for providing the photo of Ptilocercus in Fig. 11. Research was funded by grants from Wenner Gren, the Paleobiological Fund, Sigma Xi, NSF (SBR-9815884), the University of Winnipeg, and NSERC to MTS; NSF (BCS-0129601) to G.F. Gunnell, P.D. Gingerich, and JIB; NSF (SBR-9616194), Field Museum of Natural History, Sigma Xi, and the Yale University Social Science Faculty Research Fund to EJS; 2002 NSFGRF, NSF DDIG (BCS-0622544), a Leakey Foundation Grant, and NSF (BCS-1317525) to DMB. A portion of this updated manuscript was written when JIB was supported as an Edward P. Bass Distinguished Visiting Environmental Scholar in the Yale Institute for Biospheric Studies (YIBS).


  1. Adkins RM, Honeycutt RL (1991) Molecular phylogeny of the superorder Archonta. Proc Natl Acad Sci U S A 88:10317–10321PubMedCentralPubMedCrossRefGoogle Scholar
  2. Allman J (1977) Evolution of the visual system in the early primates. Prog Psychobiol Physiol Psychol 7:1–53Google Scholar
  3. Anemone RL, Covert HH (2000) New skeletal remains of Omomys (Primates, Omomyidae): functional morphology of the hindlimb and locomotor behavior of a middle Eocene primate. J Hum Evol 38:300–328CrossRefGoogle Scholar
  4. Ankel-Simons F, Rasmussen DT (2008) Diurnality, nocturnality, and the evolution of Primate visual systems. Yearb Phys Anthropol 51:100–117CrossRefGoogle Scholar
  5. Atsalis S (2008) A natural history of the brown mouse lemur. Prentice Hall, New YorkGoogle Scholar
  6. Barton RA (1998) Visual specialization and brain evolution in primates. Proc R Soc Lond [Biol] 265:1933–1937CrossRefGoogle Scholar
  7. Beard KC (1989). Postcranial anatomy, locomotor adaptations, and paleoecology of Early Cenozoic Plesiadapidae, Paromomyidae, and Micromomyidae (Eutheria, Dermoptera). PhD dissertation, Johns Hopkins University School of Medicine, BaltimoreGoogle Scholar
  8. Beard KC (1990) Gliding behavior and palaeoecology of the alleged primate family Paromomyidae (Mammalia, Dermoptera). Nature 345:340–341CrossRefGoogle Scholar
  9. Beard KC (1993a) Phylogenetic systematics of the Primatomorpha, with special reference to Dermoptera. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal phylogeny: placentals. Springer, New York, pp 129–150CrossRefGoogle Scholar
  10. Beard KC (1993b) Origin and evolution of gliding in Early Cenozoic Dermoptera (Mammalia, Primatomorpha). In: MacPhee RDE (ed) Primates and their relatives in phylogenetic perspective. Plenum, New York, pp 63–90CrossRefGoogle Scholar
  11. Beard KC (1998) East of Eden: Asia as an important center of taxonomic origination in mammalian evolution. In: Beard KC, Dawson MR (eds) Dawn of the age of mammals in Asia. Bulletin of Carnegie Museum of Natural History, vol 34, Carnegie Museum of Natural History, Pittsburgh, PA, pp 5–39Google Scholar
  12. Beard KC, Wang J (1995) The first Asian plesiadapoids (Mammalia: Primatomorpha). Ann Carnegie Mus 64:1–33Google Scholar
  13. Biknevicius AR (1986) Dental function and diet in the Carpolestidae (Primates, Plesiadapiformes). Am J Phys Anthropol 71:157–171PubMedCrossRefGoogle Scholar
  14. Bloch JI, Boyer DM (2002) Grasping primate origins. Science 298:1606–1610PubMedCrossRefGoogle Scholar
  15. Bloch JI, Boyer DM (2003) Response to comment on “Grasping primate origins”. Science 300:741cCrossRefGoogle Scholar
  16. Bloch JI, Boyer DM (2007) New skeletons of Paleocene-Eocene Plesiadapiformes: a diversity of arboreal positional behaviors in early primates. In: Ravosa MJ, Dagosto M (eds) Primate origins: adaptations and evolution. Springer, New York, pp 535–581CrossRefGoogle Scholar
  17. Bloch JI, Silcox MT (2001) New basicrania of Paleocene-Eocene Ignacius: re-evaluation of the plesiadapiform-dermopteran link. Am J Phys Anthropol 116:184–198PubMedCrossRefGoogle Scholar
  18. Bloch JI, Silcox MT (2006) Cranial anatomy of Paleocene plesiadapiform Carpolestes simpsoni (Mammalia, Primates) using ultra high-resolution X-ray computed tomography, and the relationships of plesiadapiforms to Euprimates. J Hum Evol 50(1):1–35PubMedCrossRefGoogle Scholar
  19. Bloch JI, Boyer DM, Houde P (2003) New skeletons of Paleocene-Eocene micromomyids (Mammalia, Primates): functional morphology and implications for euarchontan relationships. J Vertebr Paleontol 23(Suppl 3):35AGoogle Scholar
  20. Bloch JI, Silcox MT, Boyer DM, Sargis EJ (2007) New Paleocene skeletons and the relationship of plesiadapiforms to crown-clade primates. Proc Natl Acad Sci U S A 104:1159–1164PubMedCentralPubMedCrossRefGoogle Scholar
  21. Bock WJ (1977) Adaptation and the comparative method. In: Hecht MK, Goody PC, Hecht BM (eds) Major patterns in vertebrate evolution. Plenum, New York, pp 57–82CrossRefGoogle Scholar
  22. Bock WJ, von Wahlert G (1965) Adaptation and the form-function complex. Evolution 19:269–299CrossRefGoogle Scholar
  23. Boyer DM (2007) A test of the visual predation hypothesis of euprimate origins using diet-correlated measures of tooth shape. J Vertebr Paleontol 27(Suppl 3):51AGoogle Scholar
  24. Boyer DM (2009) New cranial and postcranial remains of Late Paleocene Plesiadapidae (“Plesiadapiformes”, Mammalia) from North America and Europe: description and evolutionary implications. PhD dissertation, Stony Brook University, Stony BrookGoogle Scholar
  25. Boyer DM, Bloch JI (2008) Evaluating the mitten-gliding hypothesis for Paromomyidae and Micromomyidae (Mammalia, “Plesiadapiformes”) using comparative functional morphology of new Paleogene skeletons. In: Sargis EJ, Dagosto M (eds) Mammalian evolutionary morphology: a tribute to Frederick S. Szalay. Springer, Dordrecht, pp 233–284CrossRefGoogle Scholar
  26. Boyer DM, Bloch JI, Silcox MT, Gingerich PD (2004) New observations on the anatomy of Nannodectes (Mammalia, Primates) from the Paleocene of Montana and Colorado. J Vertebr Paleontol 24(Suppl 3):40AGoogle Scholar
  27. Boyer DM, Scott CS, Fox RC (2012) New craniodental material of Pronothodectes gaoi Fox (Mammalia, “Plesiadapiformes”) and relationships among members of Plesiadapidae. Am J phys Anthropol 147:511–550PubMedCrossRefGoogle Scholar
  28. Cartmill M (1970) The orbits of arboreal mammals: a reassessment of the arboreal theory of primate evolution. PhD dissertation, University of Chicago, ChicagoGoogle Scholar
  29. Cartmill M (1972) Arboreal adaptations and the origin of the order Primates. In: Tuttle R (ed) The functional and evolutionary biology of primates. Aldine-Atherton, Chicago, pp 97–122Google Scholar
  30. Cartmill M (1974) Rethinking primate origins. Science 184:436–443PubMedCrossRefGoogle Scholar
  31. Cartmill M (1992) New views on primate origins. Evol Anthropol 1:105–111CrossRefGoogle Scholar
  32. Cartmill M (1993) A view to a death in the morning: hunting and nature through history. Harvard University Press, CambridgeGoogle Scholar
  33. Cartmill M (2012) Primate origins, human origins, and the end of higher taxa. Evol Anthropol 21:208–220PubMedCrossRefGoogle Scholar
  34. Changizi MA, Shimojo S (2008) “X-ray vision” and the evolution of forward-facing eyes. J Theor Biol 254:756–767PubMedCrossRefGoogle Scholar
  35. Chester SGB, Bloch JI, Sargis E, Silcox MT, Williamson TE (2011) Arboreality in palaechthonid plesiadapiforms (Mammalia, Primates): new evidence from a partial skeleton of early Paleocene Torrejonia wilsoni. J Vertebr Paleontol 31(Suppl 2):87A, Program and Abstracts, Chester et al. 2011Google Scholar
  36. Chester SGB, Bloch JI, Clemens WA (2012) Tarsal morphology of the oldest plesiadapiform Purgatorius indicates arboreality in the earliest primates. J Vertebr Paleontol 32(Suppl 1):77, Program and AbstractsGoogle Scholar
  37. Clemens WA (2004) Purgatorius (Plesiadapiformes, Primates?, Mammalia), a Paleocene immigrant into Northeastern Montana: stratigraphic occurrences and incisor proportions. Bull Carneg Mus Nat Hist 36:3–13CrossRefGoogle Scholar
  38. Clemens WA, Wilson GP (2012) Pattern of immigration of purgatoriids and other eutherians into the Northern North America interior. J Vertebr Paleontol 32(Suppl 1):80, Program and AbstractsGoogle Scholar
  39. Crompton RH (1995) “Visual predation,” habitat structure, and the ancestral primate niche. In: Alterman L, Doyle GA, Izard MK (eds) Creatures of the dark: the nocturnal prosimians. Plenum, New York, pp 11–30CrossRefGoogle Scholar
  40. Crompton RH, Sellers WI (2007) A consideration of leaping locomotion as a means of predator avoidance in prosimian primates. In: Gursky S, Nekaris K (eds) Primate anti-predator strategies. Springer, Berlin, pp 127–145CrossRefGoogle Scholar
  41. Crompton RH, Sellers WI, Gunther MM (1993) Energetic efficiency and ecology as selective factors in the saltatory adaptation of prosimian primates. Proc R Soc Lond [Biol] 254:41–45CrossRefGoogle Scholar
  42. Dagosto M (1988) Implications of postcranial evidence for the origin of euprimates. J Hum Evol 17:35–56CrossRefGoogle Scholar
  43. Dagosto M (2007) The postcranial morphotype of Primates. In: Ravosa MJ, Dagosto M (eds) Primate Origins: adaptation and evolution. Springer, Chicago, pp 489–534CrossRefGoogle Scholar
  44. De Queiroz K, Gauthier J (1990) Phylogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Syst Zool 39:307–322CrossRefGoogle Scholar
  45. Ducrocq S, Buffetaut E, Buffetaut-Tong H, Jaeger J-J, Jongkanjanasoontorn Y, Suteethorn Y (1992) First fossil flying lemur: a dermopteran from the Late Eocene of Thailand. Palaeontology 35:373–380Google Scholar
  46. Fox RC (1991) Saxonella (Plesiadapiformes: ?Primates) in North America: S. naylori, sp. nov., from the late Paleocene of Alberta, Canada. J Vertebr Paleontol 11:334–349CrossRefGoogle Scholar
  47. Fox RC, Scott CS (2011) A new, early Puercan (earliest Paleocene) species of Purgatorius (Plesiadapiformes, Primates) from Saskatchewan, Canada. J Paleontol 85:537–548CrossRefGoogle Scholar
  48. Franzen JL, Wilde V (2003) First gut content of a fossil primate. J Hum Evol 44:373–378PubMedCrossRefGoogle Scholar
  49. Fu J-F, Wang J-W, Tong Y-S (2002) The new discovery of the Plesiadapiformes from the early Eocene of Wutu Basin, Shandong Province. Vertebr Pal Asiat 40:219–227Google Scholar
  50. Gebo DL (2009) A response to Sargis et al. (2007). J Hum Evol 57:810–814PubMedCrossRefGoogle Scholar
  51. Gebo DL, Smith T, Dagosto M (2012) New postcranial elements for the earliest Eocene fossil primate Teilhardina belgica. J Hum Evol 63:205–218PubMedCrossRefGoogle Scholar
  52. Gheerbrant E, Sudre J, Sen S, Abrial C, Marandat B, Sigé B, Vianey-Liaud M (1998) Nouvelles données sur les mammifères du Thanetien et de l’Ypresien du Bassin d’Ouarzazate (Maroc) et leur contexte stratigraphique. Palaeovertebrata 27:155–202Google Scholar
  53. Gidley JW (1923) Paleocene primates of the Fort Union, with discussion of relationships of Eocene primates. Proc US Natl Mus 63:1–38CrossRefGoogle Scholar
  54. Gingerich PD (1976) Cranial anatomy and evolution of early Tertiary Plesiadapidae (Mammalia, Primates). Univ Mich Pap Palaeontol 15:1–141Google Scholar
  55. Gingerich PD, Gunnell GF (1992) A new skeleton of Plesiadapis cookei. Display Case 6:1–2Google Scholar
  56. Gould SJ, Vrba ES (1982) Exaptation – a missing term in the science of form. Paleobiology 8:4–15Google Scholar
  57. Gregory WK (1910) The orders of mammals. Bull Am Mus Nat Hist 27:1–524Google Scholar
  58. Gunnell GF, Morgan ME, Maas MC, Gingerich PD (1995) Comparative paleoecology of Paleogene and Neogene mammalian faunas: trophic structure and composition. Palaeogeogr Palaeoclimatol Palaeoecol 115:265–286CrossRefGoogle Scholar
  59. Hamrick MW, Rosenman BA, Brush JA (1999) Phalangeal morphology of the Paromomyidae (?Primates, Plesiadapiformes): the evidence for gliding behavior reconsidered. Am J Phys Anthropol 109:397–413PubMedCrossRefGoogle Scholar
  60. Heesy C, Ross C (2004) The nocturnal origin of the Order Primates. J Vertebr Paleontol 24(Suppl 3):69AGoogle Scholar
  61. Henke W, Tattersall I (2007) Preface to volume 2. In: Henke W, Tatterall I (eds) Handbook of Palaeoanthropology, vol 2, Primate evolution and human origins. Springer, New York, pp xi–xivCrossRefGoogle Scholar
  62. Hoffstetter R (1977) Phylogénie des primates. Bull Mém Soc Anthropol Paris t4(XIII):327–346CrossRefGoogle Scholar
  63. Hooker JJ (2001) Tarsals of the extinct insectivoran family Nyctitheriidae (Mammalia): evidence for archontan relationships. Zool J Linn Soc 132:501–529CrossRefGoogle Scholar
  64. Janečka JE, Miller W, Pringle TH, Wiens F, Zitzmann A, Helgen KM, Springer MS, Murphy WJ (2007) Molecular and genomic data identify the closest living relative of primates. Science 318:792–794PubMedCrossRefGoogle Scholar
  65. Johnston PA, Fox RC (1984) Paleocene and late Cretaceous mammals from Saskatchewan, Canada. Palaeontogr Abt A 186:163–222Google Scholar
  66. Kay RF (2003) The primate fossil record. Am J Hum Biol 15:839–840CrossRefGoogle Scholar
  67. Kay RF, Cartmill M (1977) Cranial morphology and adaptations of Palaechthon nacimienti and other Paromomyidae (Plesiadapoidea, ?Primates), with a description of a new genus and species. J Hum Evol 6:19–53CrossRefGoogle Scholar
  68. Kay RF, Thorington RW Jr, Houde P (1990) Eocene plesiadapiform shows affinities with flying lemurs not primates. Nature 345:342–344CrossRefGoogle Scholar
  69. Kay RF, Thewissen JGM, Yoder AD (1992) Cranial anatomy of Ignacius graybullianus and the affinities of the Plesiadapiformes. Am J Phys Anthropol 89:477–498CrossRefGoogle Scholar
  70. Kirk EC (2006) Visual influences on primate encephalization. J Hum Evol 51:76–90PubMedCrossRefGoogle Scholar
  71. Kirk EC, Cartmill M, Kay RF, Lemelin P (2003) Comment on “Grasping Primate Origins”. Science 300:741PubMedCrossRefGoogle Scholar
  72. Kirk EC, Lemelin P, Hamrick MW, Boyer DM, Bloch JI (2008) Intrinsic hand proportions of euarchontans and other mammals: implications for locomotor behavior of plesiadapiforms. J Hum Evol 55:278–299PubMedCrossRefGoogle Scholar
  73. Krause DW (1991) Were paromomyids gliders? Maybe, maybe not. J Hum Evol 21:177–188CrossRefGoogle Scholar
  74. Le Gros Clark WE (1959) The antecedents of man. Quadrangle Books, ChicagoGoogle Scholar
  75. Lewin R (1987) Bones of contention. Simon and Schuster, New YorkGoogle Scholar
  76. Liu F-GR, Miyamoto MM, Freire NP, Ong PQ, Tennant MR, Young TS, Gugel KF (2001) Molecular and morphological supertrees for eutherian (placental) mammals. Science 291:1786–1789PubMedCrossRefGoogle Scholar
  77. Liu L, Yu L, Pearl DK, Edwards SV (2009) Estimating species phylogenies using coalescence times among species. Syst Biol 58:468–477PubMedCrossRefGoogle Scholar
  78. Lofgren DL (1995) The bug creek problem and the Cretaceous-Tertiary boundary at McGuire Creek, Montana. Univ Calif Publ Geol Sci 140:1–185Google Scholar
  79. MacPhee RDE, Cartmill M, Gingerich PD (1983) New Paleogene primate basicrania and the definition of the order Primates. Nature 301:509–511PubMedCrossRefGoogle Scholar
  80. Maddison WP, Donoghue MJ, Maddison DR (1984) Outgroup analysis and parsimony. Syst Zool 33:83–103CrossRefGoogle Scholar
  81. Madsen O, Scally M, Douady CJ, Kao DJ, DeBry RW, Adkins R, Amrine HM, Stanhope MJ, de Jong WW, Springer MS (2001) Parallel adaptive radiations in two major clades of placental mammals. Nature 409:610–614PubMedCrossRefGoogle Scholar
  82. Marivaux L, Bocat L, Chaimanee Y, Jaeger J-J, Marandat B, Srisuk P, Tafforeau P, Yamee C, Welcomme J-L (2006) Cynocephalid dermopterans from the Palaeogene of South Asia (Thailand, Myanmar and Pakistan): systematic, evolutionary and palaeobiogeographic implications. Zool Scr 35:395–420CrossRefGoogle Scholar
  83. Martin RD (1968) Towards a new definition of Primates. Man 3:377–401CrossRefGoogle Scholar
  84. Martin RD (1986) Primates: a definition. In: Wood B, Martin L, Andrews P (eds) Major topics in primate and human evolution. Cambridge University Press, Cambridge, pp 1–31Google Scholar
  85. Martin RD (1990) Primate origins and evolution: a phylogenetic reconstruction. Princeton University Press, PrincetonGoogle Scholar
  86. Martin RM (2004) Chinese lantern for early primates. Nature 427:22–23PubMedCrossRefGoogle Scholar
  87. Matthew WD, Granger W (1921) New genera of Paleocene mammals. Am Mus Novit 13:1–7Google Scholar
  88. McHenry HM, Coffing K (2000) Australopithecus to Homo: transformations in body and mind. Annu Rev Anthropol 29:125–146CrossRefGoogle Scholar
  89. McKenna MC (1966) Paleontology and the origin of the Primates. Folia Primatol 4:1–25PubMedCrossRefGoogle Scholar
  90. McKenna MC, Bell SK (1997) Classification of mammals above the species level. Columbia University Press, New YorkGoogle Scholar
  91. Miyamoto MM, Porter CA, Goodman M (2000) c-Myc gene sequences and the phylogeny of bats and other eutherian mammals. Syst Biol 49:501–514PubMedCrossRefGoogle Scholar
  92. Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O’Brien SJ (2001a) Molecular phylogenetics and the origins of placental mammals. Nature 409:614–618PubMedCrossRefGoogle Scholar
  93. Murphy WJ, Eizirik E, O’Brien SJ, Madsen O, Scally M, Douady CJ, Teeling EC, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001b) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351PubMedCrossRefGoogle Scholar
  94. Napier JR, Napier PH (1967) A handbook of living primates. Academic, LondonGoogle Scholar
  95. Ni X, Wang Y, Hu Y, Li C (2004) A euprimate skull from the early Eocene of China. Nature 427:65–68PubMedCrossRefGoogle Scholar
  96. Ni X, Meng J, Beard KC, Gebo DL, Wang Y, Li C (2010) A new tarkadectine primate from the Eocene of Inner Mongolia, China: phylogenetic and biogeographic implications. Proc R Soc Lond [Biol] 277:247–256CrossRefGoogle Scholar
  97. Ni X, Gebo DL, Dagosto M, Meng J, Tafforeau P, Flynn JJ, Beard KC (2013) The oldest known primate skeleton and early Haplorhine evolution. Nature 498:60–64PubMedCrossRefGoogle Scholar
  98. Nie W, Fu B, O’Brien PCM, Wang J, Su W, Tanomtong A, Volobouev V, Ferguson-Smith MA, Yang F (2008) Flying lemurs – The ‘flying tree shrews’? Molecular cytogenetic evidence for Scandentia-Dermoptera sister clade. BMC Biol 6:18. doi:10.1186/1741-7007-6-18PubMedCentralPubMedCrossRefGoogle Scholar
  99. Niemitz C (1979) Outline of the behavior of Tarsius bancanus. In: Doyle GA, Martin RD (eds) The study of prosimian behavior. Academic, New York, pp 631–660Google Scholar
  100. Novacek MJ (1992) Mammalian phylogeny: shaking the tree. Nature 356:121–125PubMedCrossRefGoogle Scholar
  101. O’Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP, Goldberg SL, Kraatz BP, Luo Z-X, Meng J, Ni X, Novacek MJ, Perini FA, Randall ZS, Rougier GW, Sargis EJ, Silcox MT, Simmons NB, Spaulding M, Velazco PM, Weksler M, Wible JR, Cirranello AL (2013) The placental mammal ancestor and the post–K-Pg radiation of placentals. Science 339:662–667PubMedCrossRefGoogle Scholar
  102. Olson LE, Sargis EJ, Martin RD (2004) Phylogenetic relationships among treeshrews (Scandentia): a review and critique of the morphological evidence. J Mamm Evol 11:49–71CrossRefGoogle Scholar
  103. Olson LE, Sargis EJ, Martin RD (2005) Intraordinal phylogenetics of treeshrews (Mammalia: Scandentia) based on evidence from the mitochondrial 12S rRNA gene. Mol Phylogenet Evol 35:656–673PubMedCrossRefGoogle Scholar
  104. Pumo DE, Finamore PS, Franek WR, Phillips CJ, Tarzami S, Balzarano D (1998) Complete mitochondrial genome of a neotropical fruit bat, Artibeus jamaicensis and a new hypothesis of the relationships of bats to other eutherian mammals. J Mol Evol 47:709–717PubMedCrossRefGoogle Scholar
  105. Rasmussen DT (1990) Primate origins: lessons from a neotropical marsupial. Am J Primatol 22:263–277CrossRefGoogle Scholar
  106. Rasmussen DT, Sussman RW (2007) Parallelisms among primates and possums. In: Ravosa MJ, Dagosto M (eds) Primate origins: adaptations and evolution. Springer, New York, pp 775–803CrossRefGoogle Scholar
  107. Roberts TE, Lanier HC, Sargis EJ, Olson LE (2011) Molecular phylogeny of treeshrews (Mammalia: Scandentia) and the timescale of diversification in Southeast Asia. Mol Phylogenet Evol 60:358–372PubMedCrossRefGoogle Scholar
  108. Rose KD (1981) The Clarkforkian Land-Mammal Age and mammalian faunal composition across the Paleocene-Eocene boundary. Univ Mich Mus Pap Paleontol 26:1–197Google Scholar
  109. Rose KD (1995) The earliest primates. Evol Anthropol 3:159–173CrossRefGoogle Scholar
  110. Rose KD, Walker AC (1985) The skeleton of early Eocene Cantius, oldest lemuriform primate. Am J Phys Anthropol 66:73–89PubMedCrossRefGoogle Scholar
  111. Rowe T (1987) Definition and diagnosis in the phylogenetic system. Syst Zool 36:208–211CrossRefGoogle Scholar
  112. Runestad JA, Ruff CB (1995) Structural adaptations for gliding in mammals with implications for locomotor behavior in paromomyids. Am J Phys Anthropol 98:101–119PubMedCrossRefGoogle Scholar
  113. Russell DE (1964) Les mammifères Paléocène d’Europe. Mém Mus Hist nat nouvelle série 13:1–324Google Scholar
  114. Sargis EJ (2001a) A preliminary qualitative analysis of the axial skeleton of Tupaiids (Mammalia, Scandentia): functional morphology and phylogenetic implications. J Zool Lond 253:473–483CrossRefGoogle Scholar
  115. Sargis EJ (2001b) The grasping behaviour, locomotion and substrate use of the tree shrews Tupaia minor and T. tana (Mammalia, Scandentia). J Zool Lond 253:485–490CrossRefGoogle Scholar
  116. Sargis EJ (2002a) Functional morphology of the forelimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. J Morphol 253:10–42PubMedCrossRefGoogle Scholar
  117. Sargis EJ (2002b) Functional morphology of the hindlimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. J Morphol 254:149–185PubMedCrossRefGoogle Scholar
  118. Sargis EJ (2002c) A multivariate analysis of the postcranium of tree shrews (Scandentia, Tupaiidae) and its taxonomic implications. Mammalia 66:579–598CrossRefGoogle Scholar
  119. Sargis EJ (2002d) The postcranial morphology of Ptilocercus lowii (Scandentia, Tupaiidae): an analysis of primatomorphan and volitantian characters. J Mamm Evol 9:137–160CrossRefGoogle Scholar
  120. Sargis EJ (2002e) Primate origins nailed. Science 298:1564–1565PubMedCrossRefGoogle Scholar
  121. Sargis EJ (2004) New views on tree shrews: the role of tupaiids in primate supraordinal relationships. Evol Anthropol 13:56–66CrossRefGoogle Scholar
  122. Sargis EJ (2007) The postcranial morphology of Ptilocercus lowii (Scandentia, Tupaiidae) and its implications for primate supraordinal relationships. In: Ravosa MJ, Dagosto M (eds) Primate origins: adaptations and evolution. Springer, New York, pp 51–82CrossRefGoogle Scholar
  123. Sargis EJ, Boyer DM, Bloch JI, Silcox MT (2007) Evolution of pedal grasping in Primates. J Hum Evol 53:103–107PubMedCrossRefGoogle Scholar
  124. Sigé B, Jaeger J-J, Sudre J, Vianey-Liaud M (1990) Altiatlasius koulchii n. gen et sp., primate omomyidé du paléocène supérieur du Maroc, et les origines des euprimates. Palaeontographica 212:1–24Google Scholar
  125. Silcox MT (2001) A phylogenetic analysis of Plesiadapiformes and their relationship to Euprimates and other archontans. PhD dissertation, Johns Hopkins School of Medicine, BaltimoreGoogle Scholar
  126. Silcox MT (2003) New discoveries on the middle ear anatomy of Ignacius graybullianus (Paromomyidae, Primates) from ultra high resolution X-ray computed tomography. J Hum Evol 44:73–86PubMedCrossRefGoogle Scholar
  127. Silcox MT (2007) Primate taxonomy, plesiadapiforms, and approaches to primate origins. In: Ravosa MJ, Dagosto M (eds) Primate origins: adaptations and evolution. Springer, New York, pp 143–178CrossRefGoogle Scholar
  128. Silcox MT (2008) The Biogeographic origins of Primates and Euprimates: East, West, North, or South of Eden? In: Sargis EJ, Dagosto M (eds) Mammalian Evolutionary Morphology: a tribute to Frederick S. Szalay. Springer, Dordrecht, pp 199–231CrossRefGoogle Scholar
  129. Silcox MT, Gunnell GF (2008) Plesiadapiformes. In: Janis CM, Gunnell GF, Uhen MD (eds) Evolution of Tertiary mammals of North America vol 2: marine mammals and smaller terrestrial mammals. Cambridge University Press, Cambridge, pp 207–238CrossRefGoogle Scholar
  130. Silcox MT, Bloch JI, Sargis EJ, Boyer DM (2005) Euarchonta (Dermoptera, Scandentia, Primates). In: Rose KD, Archibald JD (eds) The rise of placental mammals: origins and relationships of the major extant clades. Johns Hopkins University Press, BaltimoreGoogle Scholar
  131. Silcox MT, Bloch JI, Boyer DM, Godinot M, Ryan TM, Spoor F, Walker A (2009a) Semicircular canal system in early primates. J Hum Evol 56:315–327PubMedCrossRefGoogle Scholar
  132. Silcox MT, Dalmyn CK, Bloch JI (2009b) Virtual endocast of Ignacius graybullianus (Paromomyidae, Primates) and brain evolution in early Primates. Proc Natl Acad Sci USA 106:10987–10992PubMedCentralPubMedCrossRefGoogle Scholar
  133. Silcox MT, Benham AE, Bloch JI (2010a) Endocasts of Microsyops (Microsyopidae, Primates) and the evolution of the brain in primitive primates. J Hum Evol 58:505–521PubMedCrossRefGoogle Scholar
  134. Silcox MT, Bloch JI, Boyer DM, Houde P (2010b) Cranial anatomy of Paleocene and Eocene Labidolemur kayi (Mammalia: Apatotheria) and the relationships of the Apatemyidae to other mammals. Zool J Linn Soc 160:773–825CrossRefGoogle Scholar
  135. Silcox MT, Dalmyn CK, Hrenchuk A, Bloch JI, Boyer DM, Houde P (2011) Endocranial morphology of Labidolemur kayi (Apatemyidae, Apatotheria) and its relevance to the study of brain evolution in Euarchontoglires. J Vertebr Paleontol 31:1314–1325CrossRefGoogle Scholar
  136. Smith T, Van Itterbeeck J, Missiaen P (2004) Oldest Plesiadapiform (Mammalia, Proprimates) from Asia and its palaeobiogeographical implications for faunal interchange with North America. C R Palevol 3:43–52CrossRefGoogle Scholar
  137. Springer MS, de Jong WW (2001) Which mammalian supertree to bark up? Science 291:1709–1711PubMedCrossRefGoogle Scholar
  138. Springer MS, Murphy WJ, Eizirik E, O’Brien SJ (2003) Placental mammal diversification and the Cretaceous-Tertiary boundary. Proc Natl Acad Sci U S A 100:1056–1061PubMedCentralPubMedCrossRefGoogle Scholar
  139. Springer MS, Stanhope MJ, Madsen O, de Jong WW (2004) Molecules consolidate the placental mammal tree. Trends Ecol Evol 19:430–438PubMedCrossRefGoogle Scholar
  140. Springer MS, Meredith RW, Gatesy J, Emerling CA, Park J, Rabosky DL, Stadler T, Steiner C, Ryder OA, Janeĉka JE, Fisher CA, Murphy WJ (2012) Macroevolutionary dynamics and historical biogeography of primate diversification inferred from a species supermatrix. PLoSOne 7:e49521CrossRefGoogle Scholar
  141. Stafford BJ, Thorington RW Jr (1998) Carpal development and morphology in archontan mammals. J Morphol 235:135–155PubMedCrossRefGoogle Scholar
  142. Storch G, Richter G (1994) Zur Paläobiologie Messeler Igel. Natur u Museum 124:81–90Google Scholar
  143. St. Mivart G (1873) On Lepilemur and Cheirogaleus, and on the zoological rank of the Lemuroidea. Proc Zool Soc Lond 484–510Google Scholar
  144. Sussman RW (1991) Primate origins and the evolution of angiosperms. Am J Primatol 23:209–223CrossRefGoogle Scholar
  145. Sussman RW, Raven RH (1978) Pollination of flowering plants by lemurs and marsupials: a surviving archaic coevolutionary system. Science 200:731–736PubMedCrossRefGoogle Scholar
  146. Sussman RW, Rasmussen DT, Raven PH (2013) Rethinking primate origins again. Am J Primatol 75:95–106PubMedCrossRefGoogle Scholar
  147. Szalay FS (1968) The beginnings of primates. Evolution 22:19–36CrossRefGoogle Scholar
  148. Szalay FS (1969) Mixodectidae, Microsyopidae, and the insectivore-primate transition. Bull Am Mus Nat Hist 140:195–330Google Scholar
  149. Szalay FS (1972) Paleobiology of the earliest primates. In: Tuttle RH (ed) The functional and evolutionary biology of primates. Aldine-Atherton, Chicago, pp 3–35Google Scholar
  150. Szalay FS (1975) Where to draw the nonprimate-primate taxonomic boundary. Folia Primatol 23:158–163PubMedCrossRefGoogle Scholar
  151. Szalay FS (1981) Phylogeny and the problem of adaptive significance: the case of the earliest primates. Folia Primatol 36:157–182PubMedCrossRefGoogle Scholar
  152. Szalay FS, Dagosto M (1980) Locomotor adaptations as reflected on the humerus of Paleogene Primates. Folia Primatol 34:1–45PubMedCrossRefGoogle Scholar
  153. Szalay FS, Dagosto M (1988) Evolution of hallucial grasping in primates. J Hum Evol 17:1–33CrossRefGoogle Scholar
  154. Szalay FS, Decker RL (1974) Origins, evolution, and function of the tarsus in late Cretaceous Eutheria and Paleocene primates. In: Jenkins FA Jr (ed) Primate locomotion. Academic, New York, pp 223–359Google Scholar
  155. Szalay FS, Delson E (1979) Evolutionary history of the primates. Academic, New YorkGoogle Scholar
  156. Szalay FS, Drawhorn G (1980) Evolution and diversification of the Archonta in an arboreal milieu. In: Luckett WP (ed) Comparative biology and evolutionary relationships of tree shrews. Plenum, New York, pp 133–169CrossRefGoogle Scholar
  157. Szalay FS, Lucas SG (1993) Cranioskeletal morphology of archontans, and diagnoses of Chiroptera, Volitantia, and Archonta. In: MacPhee RDE (ed) Primates and their relatives in phylogenetic perspective. Plenum, New York, pp 187–226CrossRefGoogle Scholar
  158. Szalay FS, Lucas SG (1996) The postcranial morphology of Paleocene Chriacus and Mixodectes and the phylogenetic relationships of archontan mammals. Bull New Mex Mus Nat Hist Sci 7:1–47Google Scholar
  159. Szalay FS, Tattersall I, Decker RL (1975) Phylogenetic relationships of Plesiadapis: postcranial evidence. In: Szalay FS (ed) Approaches to primate paleobiology. Karger, Basel, pp 136–166Google Scholar
  160. Szalay FS, Rosenberger AL, Dagosto M (1987) Diagnosis and differentiation of the order Primates. Yearb Phys Anthropol 30:75–105CrossRefGoogle Scholar
  161. Tabuce R, Mahboubi M, Tafforeau P, Sudre J (2004) Discovery of a highly-specialized plesiadapiform primate in the early-middle Eocene of Northwestern Africa. J Hum Evol 47:305–321PubMedCrossRefGoogle Scholar
  162. Tabuce R, Marivaux L, Lebrun R, Adaci M, Bensalah M, Fabre PH, Fara E, Gomes Rodrigues H, Hautier L, Jaeger JJ, Lazzari V, Mebrouk F, Peigné S, Sudre J, Tafforeau P, Valentin X, Mahboubi M (2009) Anthropoid versus Strepsirhine status of the African Eocene primates Algeripithecus and Azibius: craniodental evidence. Proc Biol Sci 276:4087–4094PubMedCentralPubMedCrossRefGoogle Scholar
  163. Tong Y (1988) Fossil tree shrews from the Eocene Hetaoyuan formation of Xichuan, Henan. Vertebr Pal Asiat 26:214–220Google Scholar
  164. Van Valen LM (1994) The origin of the plesiadapid primates and the nature of Purgatorius. Evol Monogr 15:1–79Google Scholar
  165. Van Valen LM, Sloan RE (1965) The earliest primates. Science 150:743–745PubMedCrossRefGoogle Scholar
  166. Waddell PJ, Okada N, Hasegawa M (1999) Towards resolving the interordinal relationships of placental mammals. Syst Biol 48:1–5PubMedCrossRefGoogle Scholar
  167. Wible JR (1993) Cranial circulation and relationships of the Colugo Cynocephalus (Dermoptera, Mammalia). Am Mus Novit 3072:1–27Google Scholar
  168. Wible JR, Covert HH (1987) Primates: cladistic diagnosis and relationships. J Hum Evol 16:1–22CrossRefGoogle Scholar
  169. Wible JR, Martin JR (1993) Ontogeny of the tympanic floor and roof in archontans. In: MacPhee RDE (ed) Primates and their relatives in phylogenetic perspective. Plenum, New York, pp 111–146CrossRefGoogle Scholar
  170. Yapuncich G, Boyer D, Secord R, Bloch JI (2011) The first dentally associated skeleton of Plagiomenidae (Mammalia,? Dermoptera) from the Late Paleocene of Wyoming. J Vertebr Paleontol 31(Suppl 2):218, Program and AbstractsGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Mary T. Silcox
    • 1
  • Eric J. Sargis
    • 2
  • Jonathan I. Bloch
    • 3
  • Doug M. Boyer
    • 4
  1. 1.Department of AnthropologyUniversity of Toronto ScarboroughTorontoCanada
  2. 2.Department of AnthropologyYale UniversityNew HavenUSA
  3. 3.Florida Museum of Natural HistoryUniversity of FloridaGainesvilleUSA
  4. 4.Biological Sciences BuildingDuke University, Department of Evolutionary AnthropologyDurhamUSA

Personalised recommendations