Skip to main content

Motivation and Overview of Hydrological Ensemble Post-processing

  • Reference work entry
  • First Online:

Abstract

In this introduction to this chapter on hydrologic post-processing, we discuss the different but complementary directives that the “art” of post-processing must satisfy: the particular directive defined by specific applications and user needs; versus the general directive of making any ensemble member indistinguishable from the observations. Also discussed are the features of hydrologic post-processing that are similar and separate from meteorological post-processing, providing a tie-in to early chapters in this handbook. We also provide an overview of the different aspects the practitioner should keep in mind when developing and implementing algorithms to adequately “correct and calibrate” ensemble forecasts: when forecast uncertainties should be characterized separately versus maintaining a “lumped” approach; additional aspects of hydrological ensembles that need to be maintained to satisfy additional user requirements, such as temporal covariability in the ensemble time series, an overview of the different post-processing approaches being used in practice and in the literature, and concluding with a brief overview of more specific requirements and challenges implicit in the “art” of post-processing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   599.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • F. Atger, The skill of ensemble prediction systems. Mon. Weather Rev. 127(9), 1941–1953 (1999)

    Article  Google Scholar 

  • J. Bremnes, Probabilistic forecasts of precipitation in terms of quantiles using NWP model output. Mon. Weather Rev. 132, 338–347 (2004)

    Article  Google Scholar 

  • R. Buizza, D.S. Richardson, T.N. Palmer, Benefits of increased resolution in the ECMWF ensemble system and comparison with poor-man’s ensembles. Q. J. R. Meteorol. Soc. 129(589), 1269–1288 (2003)

    Article  Google Scholar 

  • M. Clark, S. Gangopadhyay, L. Hay, B. Rajagopalan, R. Wilby, The Schaake shuffle: a method for reconstructing space–time variability in forecasted precipitation and temperature fields. J. Hydrometeorol. 5, 243–262 (2004)

    Article  Google Scholar 

  • V. Fortin, A.-C. Favre, M. Saïd, Probabilistic forecasting from ensemble prediction systems: improving upon the best-member method by using a different weight and dressing kernel for each member. Q. J. R. Meteorol. Soc. 132(617), 1349–1369 (2006)

    Article  Google Scholar 

  • D.C. Garen, Improved techniques in regression-based streamflow volume forecasting. J. Water Resour. Plan. Manage. 118(6), 654–670 (1992)

    Article  Google Scholar 

  • H.R. Glahn, D.A. Lowry, The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteorol. 11, 1203–1211 (1972)

    Article  Google Scholar 

  • T. Gneiting, A.-E. Raftery, A.-H. Westveld, T. Goldman, Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Weather Rev. 133(5), 1098–1118 (2005)

    Article  Google Scholar 

  • C.W.J. Granger, P. Newbold, Forecasting Economic Time Series (Academic, Orlando, 1986)

    Google Scholar 

  • T.M. Hamill, S.J. Colucci, Verification of Eta–RSM short-range ensemble forecasts. Mon. Weather Rev. 125(6), 1312–1327 (1997)

    Article  Google Scholar 

  • J.A. Hanley, Simple and multiple linear regression: sample size considerations. J. Clin. Epidemiol. 79, 112–119 (2016). https://doi.org/10.1016/j.jclinepi.2016.05.014

    Article  Google Scholar 

  • J. Hoeting, D. Madigan, A. Raftery, C. Volinsky, Bayesian model averaging: a tutorial (with discussion). Stat. Sci. 14(4), 382–417 (1999). Correction: vol. 15, pp. 193–195

    Google Scholar 

  • T.M. Hopson, Operational Flood-Forecasting for Bangladesh. Ph.D. thesis, University of Colorado, 2005, 225pp

    Google Scholar 

  • T.M. Hopson, P.J. Webster, A 1–10-day ensemble forecasting scheme for the major river basins of Bangladesh: forecasting severe floods of 2003–07. J. Hydrometeorol. 11(3), 618–641 (2010)

    Article  Google Scholar 

  • F. Hoss, P.S. Fischbeck, Performance and robustness of probabilistic river forecasts computed with quantile regression based on multiple independent variables. Hydrol. Earth Syst. Sci. 19 3969–3990 (2015). https://doi.org/10.5194/hess-19-3969-2015

    Article  Google Scholar 

  • G.T. Knofczynski, D. Mundfrom, Sample sizes when using multiple linear regression for prediction. Educ. Psychol. Meas. 68(3), 431–442 (2008). https://doi.org/10.1177/0013164407310131

    Article  Google Scholar 

  • T.N. Krishnamurti, C.M. Kishtawal, T.E. LaRow, D.R. Bachiochi, Z. Zhang, C.E. Williford, … S. Surendran, Improved weather and seasonal climate forecasts from multimodel superensemble. Science 285(5433), 1548–1550 (1999)

    Article  Google Scholar 

  • E.O. Ogundimu, D.G. Altman, G.S. Collins, Adequate sample size for developing prediction models is not simply related to events per variable. J. Clin. Epidemiol. 76, 175–182 (2016). https://doi.org/10.1016/j.jclinepi.2016.02.031

    Article  Google Scholar 

  • S. Opitz-Stapleton, S. Gangopadhyay, B. Rajagopalan, Generating streamflow forecasts for the Yakima River Basin using large-scale climate predictors. J. Hydrol. 341(3–4), 131–143 (2007). https://doi.org/10.1016/j.jhydrol.2007.03.024

    Article  Google Scholar 

  • T.C. Pagano, D.C. Garen, T.R. Perkins, P.A. Pasteris, Daily updating of operational statistical seasonal water supply forecasts for the Western U.S. J. Am. Water Resour. Assoc. 45(3), 767–778 (2009). https://doi.org/10.1111/j.1752-1688.2009.00321.x

    Article  Google Scholar 

  • T.N. Palmer, Predicting uncertainty in forecasts of weather and climate. Rep. Prog. Phys. 63(2), 71 (2000)

    Article  Google Scholar 

  • S.K. Regonda, B. Rajagopalan, M. Clark, E. Zagona, A multimodel ensemble forecast framework: application to spring seasonal flows in the Gunnison River Basin. Water Resour. Res. 42(9), 1–14 (2006). https://doi.org/10.1029/2005WR004653

  • M.-S. Roulston, L.-A. Smith, Combining dynamical and statistical ensembles. Tellus 55A(1), 16–30 (2003)

    Article  Google Scholar 

  • D. Rousseau, P. Chapelet, A test of the Monte-Carlo method using the WMO/CAS Intercomparison Project data, in Report of the Second Session of the CAS Working Group on Short-and Medium-Range Weather Prediction Research. WMO/TD 91, PSMP Rep. Series 18 (1985), 114pp

    Google Scholar 

  • A. Sankarasubramanian, U. Lall, Flood quantiles in a changing climate: seasonal forecasts and causal relations. Water Resour. Res. 39(5), 1134 (2003). https://doi.org/10.1029/2002WR001593

    Article  Google Scholar 

  • R. Schefzik, T.L. Thorarinsdottir, T. Gneiting, Uncertainty quantification in complex simulation models using ensemble copula coupling. Statistical Science 48, 616–640 (2013)

    Article  Google Scholar 

  • F.A. Souza Filho, U. Lall, Seasonal to interannual ensemble streamflow forecasts for Ceara, Brazil: applications of a multivariate, semiparametric algorithm. Water Resour. Res. 39(11), 1307 (2003). https://doi.org/10.1029/2002WR001373

    Article  Google Scholar 

  • G.A. Tootle, A.K. Singh, T.C. Piechota, I. Farnham, Long lead-time forecasting of U.S. streamflow using partial least squares regression. J. Hydrol. Eng. 12, 442–451 (2007)

    Article  Google Scholar 

  • J.S. Verkade, J.D. Brown, F. Davids, P. Reggiani, A.H. Weerts, Estimating predictive hydrological uncertainty by dressing deterministic and ensemble forecasts; a comparison, with application to Meuse and Rhine. J. Hydrol. 555, 257–277 (2017). https://doi.org/10.1016/j.jhydrol.2017.10.024

    Article  Google Scholar 

  • D.S. Wilks, Statistical Methods in the Atmospheric Sciences (Academic/Elsevier, 2011)

    Google Scholar 

  • A.W. Wood, D.P. Lettenmaier, An ensemble approach for attribution of hydrologic prediction uncertainty. Geophys. Res. Lett. 35, L14401 (2008). https://doi.org/10.1029/2008GL034648

    Article  Google Scholar 

  • A.W. Wood, J.C. Schaake, Correcting errors in streamflow forecast ensemble mean and spread. J. Hydrometeorol. 9, 132–148 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy Wood .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hopson, T.M., Wood, A., Weerts, A.H. (2019). Motivation and Overview of Hydrological Ensemble Post-processing. In: Duan, Q., Pappenberger, F., Wood, A., Cloke, H., Schaake, J. (eds) Handbook of Hydrometeorological Ensemble Forecasting. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39925-1_36

Download citation

Publish with us

Policies and ethics