Skip to main content

The Family Methanobacteriaceae

  • Reference work entry
  • First Online:

Abstract

The family Methanobacteriaceae (order Methanobacteriales, class Methanobacteria) currently (January 2014) consists of four genera: Methanobacterium, Methanobrevibacter, Methanosphaera and Methanothermobacter, with a total of 49 species. Morphologically the family is very diverse, cell shape varying from cocci or short rods to long filamentous rods. Motility is seldom encountered. The cell wall consists of pseudomurein, and cells generally stain Gram-positive. Polar lipids are based on archaeol and caldarchaeol core lipids. Phopholipid head groups include glucose, myo-inositol, serine and in some genera ethanolamine. All species are strict anaerobes, and most members of the family obtain energy for growth from the reduction of CO2 with H2. Formate is used by many species. Species of the genus Methanosphaera do not reduce CO2 but obtain their energy only from the reduction of methanol by H2. The mol% G+C of the DNA varies between 23 and 62. Members of the family are widely distributed in anaerobic environments including aquatic sediments, sewage treatment systems, gastrointestinal tracts of animals, and in geothermal areas.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmed W, Sidhu JPS, Toze S (2012) Evaluation of the nifH gene marker of Methanobrevibacter smithii for the detection of sewage pollution in environmental waters in Southeast Queensland, Australia. Environ Sci Technol 46:543–550

    CAS  PubMed  Google Scholar 

  • Asakawa S, Morii H, Akagawa-Matsushita M, Koga Y, Hayano K (1993) Characterization of Methanobrevibacter arboriphilicus SA isolated from a paddy field soil and DNA-DNA hybridization among M. arboriphilicus strains. Int J Syst Bacteriol 43:683–686, Erratum 44:185

    Google Scholar 

  • Attwood GT, Kelly WJ, Alterman EH, Leahy SC (2008) Analysis of the Methanobrevibacter ruminantium draft genome: understanding methanogen biology to inhibit their action in the rumen. Aust J Exp Agric 48:83–88

    CAS  Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bank S, Yan B, Miller TL (1996) Solid13C CPMAS NMR spectroscopy studies of biosynthesis in whole cells of Methanosphaera stadtmanae. Solid State Nucl Magn Reson 7:253–261

    CAS  PubMed  Google Scholar 

  • Baresi L, Bertani G (1984) Isolation of a bacteriophage for a methanogenic bacterium. In: Abstracts of the annual meeting of the American Society for Microbiology, New Orleans, Abstract I-74. American Society for Microbiology, Washington, DC, p 133

    Google Scholar 

  • Barker HA (1936) Studies upon the methane-producing bacteria. Arch Mikrobiol 7:420–438

    CAS  Google Scholar 

  • Barker HA (1956) Bacterial fermentations. Wiley, New York

    Google Scholar 

  • Belay N, Johnson R, Rajagopal BS, Conway de Macario E, Daniels L (1988) Methanogenic bacteria from human dental plaque. Appl Environ Microbiol 54:600–603

    CAS  PubMed Central  PubMed  Google Scholar 

  • Belay N, Mukhopadtyay B, Conway de Macario E, Galask R, Daniels L (1990) Methanogenic bacteria in human vaginal samples. J Clin Microbiol 28:1666–1668

    CAS  PubMed Central  PubMed  Google Scholar 

  • Biavati B, Vasta M, Ferry JG (1988) Isolation and characterization of “Methanosphaera cuniculi” sp. nov. Appl Environ Microbiol 54:768–771

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blotevogel K-H, Fischer U (1985) Isolation and characterization of a new thermophilic and autotrophic methane producing bacterium: Methanobacterium thermoaggregans spec. nov. Arch Microbiol 142:218–222

    CAS  Google Scholar 

  • Blotevogel K-H, Fischer U, Mocha M, Jannsen S (1985) Methanobacterium thermoalcaliphilum spec. nov., a new moderately alkaliphilic and thermophilic autotrophic methanogen. Arch Microbiol 142:211–217

    CAS  Google Scholar 

  • Bonin AS, Boone DR (2006) The order Methanobacteriales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 3. Springer, New York, pp 231–243

    Google Scholar 

  • Boone DR (1987) Request for an opinion: replacement of the type strain of Methanobacterium formicicum and reinstatement of Methanobacterium bryantii sp. nov. nom. rev. (ex Balch and Wolfe, 1981) with M.o.H. (DSM 863) as the type strain. Int J Syst Bacteriol 37:172–173

    Google Scholar 

  • Boone DR (1995) Short- and long-term maintenance of methanogenic stock cultures. In: Sowers KR, Schreier HJ (eds) Archaea: A laboratory manual. Methanogens. Cold Spring Harbor Laboratory Press, Plainview, pp 79–83

    Google Scholar 

  • Boone DR (2001a) Class I. Methanobacteria class. nov. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1: the Archaea and the deeply branching and phototrophic bacteria, vol 1, 2nd edn. Springer, New York, p 213

    Google Scholar 

  • Boone DR (2001b) Genus I. Methanobacterium Kluyver and van Niel 1936, 399AL, emend. Balch and Wolfe in Balch, Fox, Magrum, Woese and Wolfe 1979, 284. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1: the Archaea and the deeply branching and phototrophic bacteria, vol 1, 2nd edn. Springer, New York, pp 215–218

    Google Scholar 

  • Boone DR (2001c) Genus IV. Methanothermobacter Wasserfallen, Nölling, Pfister, Reeve and Conway de Macario 2000, 51VP. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1: the Archaea and the deeply branching and phototrophic Bacteria, vol 1, 2nd edn. Springer, New York, pp 230–232

    Google Scholar 

  • Boone DR, Whitman WB, Koga Y (2001a) Order I. Methanobacteriales Balch and Wolfe 1981, 216VP (Effective publication Balch and Wolfe in Balch, Fox, Magrum, Woese and Wolfe 1979, 268). In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1: the Archaea and the deeply branching and phototrophic Bacteria, vol 1, 2nd edn. Springer, New York, p 214

    Google Scholar 

  • Boone DR, Whitman WB, Koga Y (2001b) Family I. Methanobacteriaceae Barker 1956, 15AL, emend. Balch and Wolfe in Balch, Fox, Magrum, Woese and Wolfe 1979, 267. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1: the Archaea and the deeply branching and phototrophic Bacteria, vol 1, 2nd edn. Springer, New York, p 214

    Google Scholar 

  • Borrel G, Joblin K, Guedon A, Colombet J, Tardy V, Lehours A-C, Fonty G (2012) Methanobacterium lacus sp. nov., isolated from the profundal sediment of a freshwater meromictic lake. Int J Syst Evol Microbiol 62:1625–1629

    CAS  PubMed  Google Scholar 

  • Bringuier A, Khelaifia S, Richet H, Aboudharam G, Drancourt MJ (2013) Real-time PCR quantification of Methanobrevibacter oralis in periodontitis. J Clin Microbiol 51:993–994

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brusa T, Conca R, Ferrara A, Ferrari A, Pecchioni A (1987) The presence of methanobacteria in human subgingival plaque. J Clin Periodontol 14:470–471

    CAS  PubMed  Google Scholar 

  • Cadillo-Quiroz H, Bräuer SL, Goodson N, Yavitt JB, Zinder SH (2014) Methanobacterium paludis sp. nov., and a novel strain of Methanobacterium lacus isolated from northern peatlands. Int J Syst Evol Microbiol 64 (in press), doi: 10.1099/ijs.0.059964-0

    Google Scholar 

  • Cheng L, Dai L, Li X, Zhang H, Lu Y (2011) Isolation and characterization of Methanothermobacter crinale sp. nov., a novel hydrogenotrophic methanogen from the Shengli oil field. Appl Environ Microbiol 77:5212–5219

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng L, He Q, Ding C, Dai L-R, Li Q, Zhang H (2013) Novel bacterial groups dominate in a thermophilic methanogenic hexadecane-degrading consortium. FEMS Microbiol Ecol 85:568–577

    CAS  PubMed  Google Scholar 

  • Cuzin N, Ouattara AS, Labat M, Garcia J-L (2001) Methanobacterium congolense sp. nov., from a methanogenic fermentation of cassava peel. Int J Syst Evol Microbiol 51:489–493

    CAS  PubMed  Google Scholar 

  • Daniels L, Zeikus JG (1978) One-carbon metabolism in methanogenic bacteria: analysis of short-term fixation products of 14CO2 and 14CH3OH incorporated into whole cells. J Bacteriol 136:75–84

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dermoumi HL, Ansorg RAM (2001) Isolation and antimicrobial susceptibility testing of fecal strains of the archaeon Methanobrevibacter smithii. Chemotherapy 47:177–183

    CAS  PubMed  Google Scholar 

  • Dighe AS, Jangid K, González JM, Pidiyar VJ, Patole MS, Ranade DR, Shouche YS (2004) Comparison of 16S rRNA gene sequences of genus Methanobrevibacter. BMC Microbiol 4:20

    PubMed Central  PubMed  Google Scholar 

  • Ding X, Yang W-J, Min H, Peng X-T, Zhou H-Y, Lu Z-M (2010) Isolation and characterization of a new strain of Methanothermobacter marburgensis DX01 from hot springs in China. Anaerobe 16:54–59

    CAS  PubMed  Google Scholar 

  • Doddema HJ, Derksen WJM, Vogels GD (1979) Fimbriae and flagella of methanogenic bacteria. FEMS Microbiol Lett 5:135–138

    Google Scholar 

  • Dridi B, Henry M, El Khéchine A, Raoult D, Drancourt M (2009) High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PLoS One 4:e7063

    PubMed Central  PubMed  Google Scholar 

  • Dridi B, Khelaifia S, Fardeau M-L, Ollivier B, Drancourt M (2012) Tungsten-enhanced growth of Methanosphaera stadtmanae. BMC Res Notes 5:238

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrari A, Brusa T, Rutili A, Canzi E, Biavati B (1994) Isolation and characterization of Methanobrevibacter oralis sp. nov. Curr Microbiol 29:7–12

    CAS  Google Scholar 

  • Franke-Whittle IH, Goberna M, Insam H (2009) Design and testing of real-time PCR primers for the quantification of Methanoculleus, Methanosarcina, Methanothermobacter and a group of uncultured methanogens. Can J Microbiol 55:611–616

    CAS  PubMed  Google Scholar 

  • Fricke WF, Seedorf H, Henne A, Krüer M, Liesegang H, Hedderich R, Gottschalk G, Thauer RK (2006) The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis. J Bacteriol 188:642–658

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gilbert RA, Ouwerkerk D, Klieve AV (2010) Isolation of viruses for bio-control of methanogenic archaea from the rumen. Proc Aust Soc Anim Prod 28:68

    Google Scholar 

  • Grant WD, Pinch G, Harris JE, De Rosa M, Gambacorta A (1985) Polar lipids in methanogen taxonomy. J Gen Microbiol 131:3277–3286

    CAS  Google Scholar 

  • Haines AP, Metz G, Dilawari J, Blendis L, Wiggins H (1977) Breath-methane in patients with cancer of the large bowel. Lancet 310:481–483

    Google Scholar 

  • Hansen EE, Lozupone CA, Rey FE, Wu M, Guruge JL, Narra A, Goodfellow J, Zaneveld JR, McDonald DT, Goodrich JA, Heath AC, Knight R, Gordon JI (2011) Pan-genome of the dominant human gut-associated archaeon, Methanobrevibacter smithii, studied in twins. Proc Natl Acad Sci USA 108(Suppl 1):4599–4606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hara K, Shinzato N, Oshima T, Yamagishi A (2004) Endoxymbiotic Methanobrevibacter species living in symbiotic protists of the termite Reticulotermes speratus detected by fluorescent in situ hybridization. Microbes Environ 19:120–127

    Google Scholar 

  • Harris JE (1985) GELRITE as an agar substitute for the cultivation of mesophilic Methanobacterium and Methanobrevibacter species. Appl Environ Microbiol 50:1107–1109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hedderich R, Whitman WB (2006) Physiology and biochemistry of the methane-producing Archaea. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 2. Springer, New York, pp 1050–1079

    Google Scholar 

  • Hippe H (1984) Maintenance of methanogenic bacteria. In: Kirsop BE, Snell JJS (eds) Maintenance of microorganisms: a manual of laboratory methods. Academic, London, pp 69–81

    Google Scholar 

  • Jain MK, Thompson TE, Conway de Macario E, Zeikus JG (1987) Speciation of Methanobacterium strain Ivanov as Methanobacterium ivanovii, sp. nov. Syst Appl Microbiol 9:77–82

    CAS  Google Scholar 

  • Jangid K, Rastogi G, Patole MS, Shouche YS (2004) Methanobrevibacter: is it a potential pathogen? Curr Sci 86:1475–1476

    Google Scholar 

  • Jarvis GN, Strömpl C, Burgess DM, Skilman LC, Moore ERB, Joblin KN (2000) Isolation and identification of ruminal methanogens from grazing cattle. Curr Microbiol 40:327–332

    CAS  PubMed  Google Scholar 

  • Johnston C, Ufnar JA, Griffith JF, Gooch JA, Stewart JR (2010) A real-time qPCR assay for the detection of the nifH gene of Methanobrevibacter smithii, a potential indicator of sewage pollution. J Appl Microbiol 109:1946–1956

    CAS  PubMed  Google Scholar 

  • Jones WJ, Holzer GU (1991) The polar and neutral lipid composition of Methanosphaera stadtmanae. Syst Appl Microbiol 14:130–134

    CAS  Google Scholar 

  • Jordan M, Meile L, Leisinger T (1989) Organization of Methanobacterium thermoautotrophicum bacteriophage ψM1 DNA. Mol Gen Genet 220:161–164

    CAS  PubMed  Google Scholar 

  • Joulian C, Patel BKC, Ollivier B, Garcia J-L, Roger PA (2000) Methanobacterium oryzae sp. nov., a novel methanogenic rod isolated from a Philippines ricefield. Int J Syst Evol Microbiol 50:525–528

    PubMed  Google Scholar 

  • Judicial Commission of the International Committee on Systematic Bacteriology (1992) Opinion 64: Designation of strain MF (DSM 1535) in place of strain M.o.H. (DSM 863) as the type strain of Methanobacterium formicicum Schnellen 1947, and designation of strain M.o.H. (DSM 863) as the type strain of Methanobacterium bryantii (Balch and Wolfe in Balch, Fox, Magrum, Woese, and Wolfe 1979, 284) Boone 1987, 173. Int J Syst Bacteriol 42:654

    Google Scholar 

  • Kandler O, König H (1985) Cell envelopes of archaebacteria. In: Woese CR, Wolfe RS (eds) The Bacteria. A treatise on structure and function. Archaebacteria, vol 8. Academic, New York, pp 413–457

    Google Scholar 

  • Kaster A-K, Goenrich M, Seedorf H, Liesegang H, Wollherr A, Gottschalk G, Thauer RK (2011) More than 200 genes required for methane formation from H2 and CO2 and energy conservation are present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus. Archaea 2011:973848

    PubMed Central  PubMed  Google Scholar 

  • Kawaguchi H, Sakuma T, Nakata Y, Kobayashi H, Endo K, Sato K (2010) Methane production by Methanothermobacter thermautotrophicus to recover energy from carbon dioxide sequestered in geological reservoirs. J Biosci Bioeng 110:106–108

    CAS  PubMed  Google Scholar 

  • Kim G, Deepinder F, Morales W, Hwang L, Weitsman S, Chang C, Gunsalus R, Pimentel M (2012) Methanobrevibacter smithii is the predominant methanogen in patients with constipation-predominant IBS and methane on breath. Dig Dis Sci 57:3213–3218

    CAS  PubMed  Google Scholar 

  • Kitamura K, Fujita T, Akada S, Tonouchi A (2011) Methanobacterium kanagiense sp. nov., a hydrogenotrophic methanogen, isolated from rice-field soil. Int J Syst Evol Microbiol 61:1246–1252

    PubMed  Google Scholar 

  • Kluyver AJ, van Niel CB (1936) Prospects for a natural system of classification of bacteria. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 94:369–403

    Google Scholar 

  • Kneifel H, Stetter KO, Andreesen JR, Wiegel J, König H, Schoberth SM (1986) Distribution of polyamines in representative species of archaebacteria. Syst Evol Microbiol 7:241–245

    CAS  Google Scholar 

  • Knox MR, Harris JE (1986) Isolation and characterization of a bacteriophage from Methanobrevibacter smithii. In: Abstracts of the XIV international congress of microbiology, Manchester, UK. Abstract P.G3-8, p 240

    Google Scholar 

  • Koga Y, Morii H, Akagawa-Matsushita M, Ohga M (1998) Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens. Further analysis of lipid component parts. Biosci Biotechnol Biochem 62:230–236

    CAS  Google Scholar 

  • Kong Y, Xia Y, Seviour R, Forster R, McAllister TA (2013) Biodiversity and composition of methanogenic populations in the rumen of cows fed alfalfa hay or triticale straw. FEMS Microbiol Ecol 84:302–315

    CAS  PubMed  Google Scholar 

  • König H (1984) Isolation and characterization of Methanobacterium uliginosum sp. nov. from a marshy soil. Can J Microbiol 30:1477–1481

    Google Scholar 

  • König H (1986) Chemical composition of cell envelopes of methanogenic bacteria isolated from human and animal feces. Syst Appl Microbiol 8:159–162

    Google Scholar 

  • König H, Kralik R, Kandler O (1982) Structure and modifications of pseudomurein in Methanobacteriales. Zbl Bakt Hyg I Abt Orig C 3:179–191

    Google Scholar 

  • Kosaka T, Toh H, Toyoda A (2013) Complete genome sequence of a thermophilic hydrogenotrophic methanogen, Methanothermobacter sp. strain CaT2. Genome Announc 1:e00672-13

    PubMed Central  PubMed  Google Scholar 

  • Kotelnikova SS, Obraztsova AY, Blotevogel K-H, Popov IN (1993a) Taxonomic analysis of thermophilic strains of the genus Methanobacterium: reclassification of Methanobacterium thermoalcaliphilum as a synonym of Methanobacterium thermoautotrophicum. Int J Syst Bacteriol 43:591–596

    Google Scholar 

  • Kotelnikova SS, Obraztsova AY, Gongadze GM, Laurinavichius KS (1993b) Methanobacterium thermoflexum sp. nov. and Methanobacterium defluvii sp. nov., thermophilic rod-shaped methanogens isolated from anaerobic digestor sludge. Syst Appl Microbiol 16:427–435

    Google Scholar 

  • Kotelnikova S, Macario AJL, Pedersen K (1998) Methanobacterium subterraneum sp. nov., a new alkaliphilic, eurythermic and halotolerant methanogen isolated from deep granitic groundwater. Int J Syst Bacteriol 48:357–367

    PubMed  Google Scholar 

  • Krivushin KV, Shcherbakova VA, Petrovskaya LE, Rivkina EM (2010) Methanobacterium veterum sp. nov., from ancient Siberian permafrost. Int J Syst Evol Microbiol 60:455–459

    CAS  PubMed  Google Scholar 

  • Krupovič M, Forterre P, Bamford DH (2010) Comparative analyses of the mosaic genomes of tailed archaeal viruses and proviruses suggests common themes for virion architecture and assembly with tailed viruses of Bacteria. J Mol Biol 397:144–160

    PubMed  Google Scholar 

  • Langworthy TA, Tornabene TG, Holzer G (1982) Lipids of Archaebacteria. Zbl Bakt Hyg I Abt Orig C 3:228–244

    CAS  Google Scholar 

  • Laurinavichius KS, Kotelnikova SV, Obraztsova AY (1988) A new species of the thermophilic methane-forming bacterium Methanobacterium thermophilum. Mikrobiologyia 57:1035–1041 (English translation: Microbiology 57:832–838)

    Google Scholar 

  • Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62:3620–3631

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leadbetter JR, Crosby LD, Breznak JA (1998) Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Arch Microbiol 169:287–292

    CAS  PubMed  Google Scholar 

  • Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ, Pacheco DM, Li D, Kong Z, McTavish S, Sang C, Lambie SC, Janssen PH, Dey D, Attwood GT (2010) The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS One 5:e8926

    PubMed Central  PubMed  Google Scholar 

  • Leahy SC, Kelly WJ, Li D, Li Y, Altermann E, Lambie SC, Cox F, Attwood GT (2013) The complete genome sequence of Methanobrevibacter sp. AbM4. Stand Genomic Sci 8:215–227

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee J-H, Kumar S, Lee G-H, Chang D-H, Rhee M-S, Yoon M-H, Kim B-C (2013a) Methanobrevibacter boviskoreani sp. nov., isolated from the rumen of Korean native cattle. Int J Syst Evol Microbiol 63:4196–4201

    CAS  PubMed  Google Scholar 

  • Lee J-H, Rhee M-S, Kumar S, Lee G-H, Chang D-H, Kim D-S, Choi S-H, Lee D-W, Yoon M-H, Kim B-C (2013b) Genome sequence of Methanobrevibacter sp. strain JH1, isolated from rumen of Korean native cattle. Genome Announc 1:e00002–13

    PubMed Central  PubMed  Google Scholar 

  • Lepp PW, Brinig MM, Ouverney CC, Palm K, Armitage GC, Relman DA (2004) Methanogenic Archaea and human periodontal disease. Proc Natl Acad Sci U S A 101:6176–6181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liesegang H, Kaster A-K, Wiezer A, Goenrich M, Wollherr A, Seedorf H, Gottschalk G, Thauer RK (2010) Complete genome sequence of Methanothermobacter marburgensis, a methanoarchaeon model organism. J Bacteriol 192:5850–5851

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin C, Miller TL (1998) Phylogenetic analysis of Methanobrevibacter isolated from feces of humans and other animals. Arch Microbiol 169:397–403

    CAS  PubMed  Google Scholar 

  • Luo Y, Pfister P, Leisinger T, Wasserfallen A (2001) The genome of archaeal prophage ΨM100 encodes the lytic enzyme responsible for autolysis of Methanothermobacter wolfeii. J Bacteriol 183:5788–5792

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma K, Liu X, Dong X (2005) Methanobacterium beijingense sp. nov., a novel methanogen isolated from anaerobic digesters. Int J Syst Evol Microbiol 55:325–329

    CAS  PubMed  Google Scholar 

  • Magingo FSS, Stumm CK (1991) Nitrogen fixation by Methanobacterium formicicum. FEMS Microbiol Lett 81:273–277

    CAS  Google Scholar 

  • Mah RA, Smith MR (1981) The methanogenic bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. A handbook on habitats, isolation, and identification of bacteria, vol 1. Springer, New York, pp 948–977

    Google Scholar 

  • Martin JE, Baresi L (2006) Progress toward genomic investigation of Methanobrevibacter smithii phage PG. Abstracts of the Annual Meeting of the American Society for Microbiology, Orlando, Abstract I-061. American Society for Microbiology, Washington, DC, p 307

    Google Scholar 

  • Mathur R, Kim G, Morales W, Sung J, Rooks E, Pokkunuri V, Weitsman S, Barlow GM, Chang C, Pimentel M (2013) Intestinal Methanobrevibacter smithii but not total bacteria is related to diet-induced weight gain in rats. Obesity 21:748–754

    CAS  PubMed  Google Scholar 

  • Meile L, Jenal U, Studer D, Jordan M, Leisinger T (1989) Characterization of ψM1, a virulent phage of Methanobacterium thermoautotrophicum Marburg. Arch Microbiol 152:105–110

    CAS  Google Scholar 

  • Meile L, Abendschein P, Leisinger T (1990) Transduction in the archaebacterium Methanobacterium thermoautotrophicum Marburg. J Bacteriol 172:3507–3508

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller TL (2001a) Genus II. Methanobrevibacter Balch and Wolfe 1981, 216VP (Effective publication: Balch and Wolfe in Balch, Fox, Magrum, Woese and Wolfe 1979, 284). In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1: The Archaea and the deeply branching and phototrophic Bacteria, 2nd edn. Springer, New York, pp 218–226

    Google Scholar 

  • Miller TL (2001b) Genus III. Methanosphaera Miller and Wolin 1985b, 535VP (Effective publication: Miller and Wolin 1985a, 121). In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1: the Archaea and the deeply branching and phototrophic Bacteria, 2nd edn. Springer, New York, pp 226–229

    Google Scholar 

  • Miller TL, Lin C (2002) Description of Methanobrevibacter gottschalkii sp. nov., Methanobrevibacter thaueri sp. nov., Methanobrevibacter woesei sp. nov. and Methanobrevibacter wolinii sp. nov. Int J Syst Evol Microbiol 52:819–822

    CAS  PubMed  Google Scholar 

  • Miller TL, Wolin MJ (1982) Enumeration of Methanobrevibacter smithii in human feces. Arch Microbiol 131:14–18

    CAS  PubMed  Google Scholar 

  • Miller TL, Wolin MJ (1983) Stability of Methanobrevibacter smithii populations in the microbial flora excreted from the human large bowel. Appl Environ Microbiol 45:317–318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller TL, Wolin MJ (1985) Methanosphaera stadtmaniae gen. nov., sp. nov.: a species that forms methane by reducing methanol with hydrogen. Arch Microbiol 141:116–122

    CAS  PubMed  Google Scholar 

  • Miller TL, Wolin MJ (1986) Methanogens in human and animal intestinal tracts. Syst Appl Microbiol 7:223–229

    CAS  Google Scholar 

  • Miller TL, Wolin MJ, Conway de Macario E, Macario AJL (1982) Isolation of Methanobrevibacter smithii from human feces. Appl Environ Microbiol 43:227–232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller TL, Chen X, Yan B, Bank S (1995) Solution13C nuclear magnetic resonance spectroscopic analysis of the amino acids of Methanosphaera stadtmanae: biosynthesis and origin of one-carbon units from acetate and carbon dioxide. Appl Environ Microbiol 61:1180–1186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mori K, Harayama S (2011) Methanobacterium petrolearium sp. nov. and Methanobacterium ferruginis sp. nov., mesophilic methanogens isolated from salty environments. Int J Syst Evol Microbiol 61:138–143

    CAS  PubMed  Google Scholar 

  • Morii H, Koga Y (1986) Absolute stereochemical configuration of a diphytanyl ether analog of phosphatidylserine of Methanobrevibacter arboriphilus. Biochim Biophys Acta 879:103–105

    CAS  Google Scholar 

  • Morii H, Koga Y (1993) Tetraether type polar lipids increase after logarithmic growth phase of Methanobacterium thermoautotrophicum in compensation for the decrease of diether lipids. FEMS Microbiol Lett 109:283–288

    CAS  Google Scholar 

  • Morii H, Nishihara M, Ohga M, Koga Y (1986) A diphytanyl ether analog of phosphatidylserine from a methanogenic bacterium, Methanobrevibacter arboriphilus. J Lipid Res 27:724–730

    CAS  PubMed  Google Scholar 

  • Morii H, Nishihara M, Koga Y (1988) Composition of polar lipids of Methanobrevibacter arboriphilicus and structure determination of the signature phosphoglycolipid of Methanobacteriaceae. Agric Biol Chem 52:3149–3156

    CAS  Google Scholar 

  • Morii H, Eguchi T, Koga YJ (2007) In vitro biosynthesis of ether-type glycolipids in the methanoarchaeon Methanothermobacter thermautotrophicus. J Bacteriol 189:4053–4061

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moser DP, Gihring TM, Brockman FJ, Fredrickson JK, Balkwill DL, Dollhopf ME, Lollar BS, Pratt LM, Boice E, Southam G, Wanger G, Baker BJ, Pfiffner SM, Lin L-H, Onstott TC (2005) Desulfotomaculum and Methanobacterium spp. dominate a 4- to 5-kilometer-deep fault. Appl Environ Microbiol 71:8773–8783

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamura K, Takahashi A, Mori C, Tamaki H, Mochimaru H, Nakamura K, Takamizawa K, Kamagata Y (2013) Methanothermobacter tenebrarum sp. nov., a hydrogenotrophic, thermophilic methanogen isolated from gas-associated formation water of a natural gas field. Int J Syst Evol Microbiol 63:715–722

    CAS  PubMed  Google Scholar 

  • Nishihara M, Morii H, Koga Y (1987) Structure determination of a quartet of novel tetraether lipids from Methanobacterium thermoautotrophicum. J Biochem 101:1007–1015

    CAS  PubMed  Google Scholar 

  • Nishihara M, Morii H, Koga Y (1989) Heptads of polar ether lipids of an archaebacterium, Methanobacterium thermoautotrophicum: structure and biosynthetic relationship. Biochemistry 28:95–102

    CAS  Google Scholar 

  • Nölling J, Frijlink M, de Vos WM (1991) Isolation and characterization of plasmids from different strains of Methanobacterium thermoformicicum. J Gen Microbiol 137:1981–1986

    Google Scholar 

  • Nölling J, Groffen A, de Vos WM (1993) ΦF1 and ΦF3, two novel virulent, archaeal phages infecting different thermophilic strains of the genus Methanobacterium. Microbiology 139:2511–2516

    Google Scholar 

  • Olson KD, McMahon CW, Wolfe RS (1991) Light sensitivity of methanogenic archaebacteria. Appl Environ Microbiol 57:2683–2686

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patel GB, Sprott GD, Fein JE (1990) Isolation and characterization of Methanobacterium espanolae sp. nov., a mesophilic, moderately acidiphilic methanogen. Int J Syst Bacteriol 40:12–18

    Google Scholar 

  • Paynter MJ, Hungate RE (1968) Characterization of Methanobacterium mobilis, sp. n., isolated from the bovine rumen. J Bacteriol 95:1943–1951

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pfister P, Wasserfallen A, Stettler R, Leisinger T (1998) Molecular analysis of Methanobacterium phage ΨM2. Mol Microbiol 30:233–244

    CAS  PubMed  Google Scholar 

  • Piqué JM, Pallarés M, Cusó E, Villar-Bonet J, Gassull MA (1984) Methane production and colon cancer. Gastroenterology 87:601–605, NOT online – From vol 85 online

    PubMed  Google Scholar 

  • Rea S, Bowman JP, Popovski S, Pimm C, Wright A-DG (2007) Methanobrevibacter millerae sp. nov. and Methanobrevibacter olleyae sp. nov., methanogens from the ovine and bovine rumen that can utilize formate for growth. Int J Syst Evol Microbiol 57:450–456

    CAS  PubMed  Google Scholar 

  • Rosewarne CP, Greenfield P, Li D, Tran-Dinh N, Midgley DJ, Hendry P (2013) Draft genome sequence of Methanobacterium sp. Maddingley, reconstructed from metagenomic sequencing of a methanogenic microbial consortium enriched from coal-seam gas formation water. Genome Announc 1:e00082-12

    PubMed Central  PubMed  Google Scholar 

  • Samuel BS, Hansen EE, Manchester JK, Coutinho PM, Henrissat B, Fulton R, Latreille P, Kim K, Wilson RK, Gordon JI (2007) Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci U S A 104:10643–10648

    CAS  PubMed Central  PubMed  Google Scholar 

  • Savant DV, Ranade DR (2004) Application of Methanobrevibacter acididurans in anaerobic digestion. Water Sci Technol 50:109–114

    CAS  PubMed  Google Scholar 

  • Savant DV, Shouche YS, Prakash S, Ranade DR (2002) Methanobrevibacter acididurans sp. nov., a novel methanogen from a sour anaerobic digester. Int J Syst Evol Microbiol 52:1081–1087

    CAS  PubMed  Google Scholar 

  • Scherer P, Kneifel H (1983) Distribution of polyamines in methanogenic bacteria. J Bacteriol 154:1315–1322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schirmack J, Mangelsdorf K, Ganzert L, Sand W, Hillebrand-Voiculescu A, Wagner D (2014) Methanobacterium movilense sp. nov., a hydrogenotrophic, secondary alcohol utilizing methanogen from the anoxic sediment of the subsurface lake in Movile Cave, Romania. Int J Syst Evol Microbiol 64:522–527

    CAS  PubMed  Google Scholar 

  • Schnellen CGTP (1947) Onderzoekingen over de methaangisting. Ph.D. Thesis, Technical University of Delft.

    Google Scholar 

  • Shcherbakova V, Rivkina E, Pecheritsyna S, Laurinavichius K, Suzina N, Gilichinsky D (2011) Methanobacterium arcticum sp. nov., a methanogenic archaeon from Holocene Arctic permafrost. Int J Syst Evol Microbiol 61:144–147

    CAS  PubMed  Google Scholar 

  • Shlimon AG, Friedrich MW, Niemann H, Ramsing NB, Finster K (2004) Methanobacterium aarhusense sp. nov., a novel methanogen isolated from a marine sediment (Aarhus Bay, Denmark). Int J Syst Evol Microbiol 54:759–763

    CAS  PubMed  Google Scholar 

  • Smith PH, Hungate RE (1958) Isolation and characterization of Methanobacterium ruminantium nov. sp. J Bacteriol 75:713–718

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith DR, Doucette-Stamm LA, Deloughery C, Lee H, Dubois J, Aldredge T, Bashirzadeh R, Blakely D, Cook R, Gilbert K, Harrison D, Hoang L, Keagle P, Lumm W, Pothier B, Qiu D, Spadafora R, Vicaire R, Wang Y, Wierzbowski J, Gibson R, Jiwani N, Caruso A, Bush D, Safer H, Patwell D, Prabhakar S, McDougall S, Shimer G, Goyal A, Pietrokovski S, Church GM, Daniels CJ, Mao J-I, Rice P, Nölling J, Reeve JN (1997) Complete functional sequence of Methanobacterium thermoautotrophicum ΔH: functional analysis and comparative genomics. J Bacteriol 179:7135–7155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sprott GD, Brisson J-R, Dicaire CJ, Pelletier AK, Deschatelets LA, Krishnan L, Patel GB (1999) A structural comparison of the total polar lipids from the human archaea Methanobrevibacter smithii and Methanosphaera stadtmanae and its relevance to the adjuvant activities of their liposomes. Biochim Biophys Acta 1440:275–288

    CAS  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    CAS  PubMed  Google Scholar 

  • Stax D, Hermann R, Falchetto R, Leisinger T (1992) The lytic enzyme in bacteriophage ψM1-induced lysates of Methanobacterium thermoautotrophicum Marburg. FEMS Microbiol Lett 100:433–438

    CAS  Google Scholar 

  • Stetter KO, Gaag G (1983) Reduction of molecular sulphur by methanogenic bacteria. Nature 305:309–311

    CAS  Google Scholar 

  • Stettler R, Erauso G, Leisinger T (1995a) Physical and genetic map of the Methanobacterium wolfei genome and its comparison with the updated genomic map of Methanobacterium thermoautotrophicum Marburg. Arch Microbiol 163:205–210

    CAS  Google Scholar 

  • Stettler R, Thurner C, Stax D, Meile L, Leisinger T (1995b) Evidence for a defective prophage on the chromosome of Methanobacterium wolfei. FEMS Microbiol Lett 132:85–89

    CAS  PubMed  Google Scholar 

  • Stupperich E, Fuchs G (1981) Products of CO2 fixation and 14C labelling pattern of alanine in Methanobacterium thermoautotrophicum pulse-labelled with 14CO2. Arch Microbiol 130:294–300

    CAS  Google Scholar 

  • Taylor CD, McBride BC, Wolfe RS, Bryant MP (1974) Coenzyme M, essential for growth of a rumen strain of Methanobacterium ruminantium. J Bacteriol 120:974–975

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tholen A, Pester M, Brune A (2007) Simultaneous methanogenesis and oxygen reduction by Methanobrevibacter cuticularis at low oxygen fluxes. FEMS Microbiol Ecol 62:303–312

    CAS  PubMed  Google Scholar 

  • Thoma C, Frank M, Rachel R, Schmid S, Näther D, Wanner G, Wirth R (2010) The Mth60 fimbriae of Methanothermobacter thermoautotrophicus are functional adhesins. Environ Microbiol 10:2785–2795

    Google Scholar 

  • Tokura M, Tajima K, Ushida KJ (1999) Isolation of Methanobrevibacter sp. as a ciliate-associated ruminal methanogen. J Gen Appl Microbiol 45:43–47

    CAS  PubMed  Google Scholar 

  • Touzel JP, Conway de Macario E, Nölling J, De Vos WM, Zhilina T, Lysenko AM (1992) DNA relatedness among some thermophilic members of the genus Methanobacterium: emendation of the species Methanobacterium thermoautotrophicum and rejection of Methanobacterium thermoformicicum as a synonym of Methanobacterium thermoautotrophicum. Int J Syst Bacteriol 42:408–411

    CAS  PubMed  Google Scholar 

  • Tumbula DL, Keshwani J, Shieh J, Whitman WB (1995) Long-term maintenance of methanogenic stock cultures in glycerol. In: DasSarma S, Fleischmann EM (eds) Archaea. A laboratory manual. Cold Spring Harbor Laboratory Press, Plainview, pp 85–87

    Google Scholar 

  • Ufnar JA, Wang SY, Christiansen JM, Yampara-Iquise H, Carson CA, Ellender RD (2006) Detection of the nifH gene of Methanobrevibacter smithii: a potential tool to identify sewage pollution in recreational waters. J Appl Microbiol 101:44–52

    CAS  PubMed  Google Scholar 

  • Ufnar JA, Wang SY, Ufnar DF, Ellender RD (2007) Methanobrevibacter ruminantium as an indicator of domesticated-ruminant fecal pollution in surface waters. Appl Environ Microbiol 73:7118–7121

    CAS  PubMed Central  PubMed  Google Scholar 

  • van Alebeek G-JWM, Tafazzul G, Kreuwels MJJ, Keltjens JT, Vogels GD (1994) Cyclic 2,3-diphosphoglycerate metabolism in Methanobacterium thermoautotrophicum (strain ΔH): characterization of the synthetase reaction. Arch Microbiol 162:193–198

    Google Scholar 

  • van de Wijngaard WMH, Creemers J, Vogels GD, van der Drift C (1991) Methanogenic pathways in Methanosphaera stadtmanae. FEMS Microbiol Lett 64:207–211

    PubMed  Google Scholar 

  • Wasserfallen A, Nölling J, Pfister P, Reeve J, Conway de Macario E (2000) Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. nov. Int J Syst Evol Microbiol 50:43–53

    CAS  PubMed  Google Scholar 

  • Wayne LG (1994) Actions of the judicial commission of the international committee on systematic bacteriology on requests for opinions published between January 1985 and July 1993. Int J Syst Bacteriol 44:177–178

    Google Scholar 

  • Weaver GA, Krause JA, Miller TL, Wolin MJ (1986) Incidence of methanogenic bacteria in a sigmoidoscopy population: an association of methanogenic bacteria and diverticulosis. Gut 27:698–704

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weiss A, Jérôme V, Freitag R, Mayer HK (2008) Diversity of the resident microbiota in a thermophilic municipal biogas plant. Appl Microbiol Biotechnol 81:163–173

    CAS  PubMed  Google Scholar 

  • Whitman WB, Bowen TL, Boone DR (2006) The methanogenic bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 3. Springer, New York, pp 165–207

    Google Scholar 

  • Winter J, Lerp C, Zabel H-P, Wildenauer FX, König H, Schindler F (1984) Methanobacterium wolfei, sp. nov., a new tungsten-requiring, thermophilic, autotrophic methanogen. Syst Appl Microbiol 5:457–466

    CAS  Google Scholar 

  • Worakit S, Boone DR, Mah RA, Abdel-Samie M-E, El-Halwag MM (1986) Methanobacterium alcaliphilum sp. nov., an H2-utilizing methanogen that grows at high pH values. Int J Syst Bacteriol 36:380–382

    Google Scholar 

  • Wright A-DG, Williams AJ, Winder B, Christophersen CT, Rodgers SL, Smith KD (2004) Molecular diversity of rumen methanogens from sheep in Western Australia. Appl Environ Microbiol 70:1263–1270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wright A-DG, Ma X, Obispo NE (2008) Methanobrevibacter phylotypes are the dominant methanogens in sheep from Venezuela. Microb Ecol 56:390–394

    PubMed  Google Scholar 

  • Yamamoto K, Tachibana A, Davises G, Tanaka T, Takiguchi M, Oi S (1989) Characterization of a thermophilic formate-utilizing methanogen, Methanobacterium thermoformicium strain SF-4. Agric Biol Chem 53:533–534

    CAS  Google Scholar 

  • Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer KH, Glöckner FO, Rosselló-Móra R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    CAS  PubMed  Google Scholar 

  • Yarza P, Spröer C, Swiderski J, Mrotzek N, Spring S, Tindall BJ, Gronow S, Pukall R, Klenk HP, Lang E, Verbarg S, Crouch A, Lilburn T, Beck B, Unosson C, Cardew S, Moore ERB, Gomila M, Nakagawa Y, Janssens D, De Vos P, Peiren J, Suttels T, Clermont D, Bizet C, Sakamoto M, Iida T, Kudo T, Kosako Y, Oshida Y, Ohkuma M, Arahal DR, Spieck E, Pommerening Roeser A, Figge M, Park D, Buchanan P, Cifuentes A, Munoz R, Euzéby JP, Schleifer KH, Ludwig W, Amann R, Glöckner FO, Rosselló-Móra R (2013) Sequencing orphan species initiative (SOS): filling the gaps in the 16S gene sequence database for all species with validly published names. Syst Appl Microbiol 36:69–73

    CAS  PubMed  Google Scholar 

  • Zeikus JG, Henning DL (1975) Methanobacterium arbophilicum sp. nov. An obligate anaerobe isolated from wetwood of living trees. Antonie van Leeuwenhoek 41:543–552

    CAS  PubMed  Google Scholar 

  • Zeikus JG, Wolfe RS (1972) Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–713

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zellner G, Bleicher K, Braun E, Kneifel H, Tindall BJ, Conway de Macario E, Winter J (1989) Characterization of a new mesophilic, secondary alcohol-utilizing methanogen, Methanobacterium palustre spec. nov. from a peat bog. Arch Microbiol 151:1–9

    CAS  Google Scholar 

  • Zhilina TN, Ilarionov SA (1984) Characteristics of formate-assimilating methane bacteria and description of Methanobacterium thermoformicium sp. nov. Mikrobiologiya 53:785–790 (English translation: Microbiology 53:647–651)

    Google Scholar 

  • Zhou X, Meile L, Kreuzer M, Zeitz JO (2013) The effect of saturated fatty acids on methanogenesis and cell viability of Methanobrevibacter ruminantium. Archaea 2013:106916

    PubMed Central  PubMed  Google Scholar 

  • Zhu J, Liu X, Dong X (2011) Methanobacterium movens sp. nov. and Methanobacterium flexile sp. nov., isolated from lake sediment. Int J Syst Evol Microbiol 61:2974–2978

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aharon Oren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Oren, A. (2014). The Family Methanobacteriaceae . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38954-2_411

Download citation

Publish with us

Policies and ethics