Advertisement

The Family Methanococcaceae

  • Aharon Oren
Reference work entry

Abstract

The family Methanococcaceae currently consists of two genera: Methanococcus (type genus) and Methanothermococcus. As of December 2013 these genera contained 4 and 2 species, respectively. This family of mesophilic or thermophilic and neutrophilic methanogens belongs to the order Methanococcales. The members are coccoid in shape, motile, and have a generation time of less than 3 h under optimal conditions. Methanogenesis from H2/CO2 or from formate is the sole energy generating process, and most species are capable of chemolithoautotrophic growth. All members require NaCl. Members of the genus Methanococcus have been found associated with coastal marine and salt marsh sediments; Methanothermococcus spp. were recovered from marine geothermal and hydrothermal vent environments.

Keywords

Furfuryl Alcohol Nitroaromatic Compound Methanosarcina Barkeri Viruslike Particle Subjective Synonym 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296PubMedCentralPubMedGoogle Scholar
  2. Barker HA (1936) Studies upon the methane-producing bacteria. Arch Mikrobiol 7:420–438CrossRefGoogle Scholar
  3. Bayley DP, Kalmokoff ML, Jarrell KF (1993) Effect of bacitracin on flagellar assembly and presumed glycosylation of the flagellins of Methanococcus deltae. Arch Microbiol 160:179–185Google Scholar
  4. Belay N, Boopathy R, Voskuilen G (1997) Anaerobic transformation of furfural by Methanococcus deltae ΔLH. Appl Environ Microbiol 63:2092–2094PubMedCentralPubMedGoogle Scholar
  5. Bernhardt G, Jaenicke R, Lüdemann H-D, König H, Stetter KO (1988) High pressure enhances the growth rate of the thermophilic archaebacterium Methanococcus thermolithotrophicus without extending its temperature range. Appl Environ Microbiol 54:1258–1261PubMedCentralPubMedGoogle Scholar
  6. Bertani G (1999) Transduction-like gene transfer in the methanogen Methanococcus voltae. J Bacteriol 181:2992–3002PubMedCentralPubMedGoogle Scholar
  7. Bertani G, Baresi L (1987) Genetic transformation in the methanogen Methanococcus voltae PS. J Bacteriol 169:2730–2738PubMedCentralPubMedGoogle Scholar
  8. Blotevogel KH, Fischer U (1989) Transfer of Methanococcus frisius to the genus Methanosarcina as Methanosarcina frisia comb. nov. Int J Syst Bacteriol 39:91–92CrossRefGoogle Scholar
  9. Blotevogel KH, Fischer U, Lüpkes KH (1986) Methanococcus frisius sp. nov., a new methylotrophic marine methanogen. Can J Microbiol 32:127–131CrossRefGoogle Scholar
  10. Boopathy R (1994) Transformation of nitroaromatic compounds by a methanogenic bacterium, Methanococcus sp. (strain B). Arch Microbiol 162:167–172CrossRefGoogle Scholar
  11. Boopathy R, Daniels L (1992) Isolation and characterization of a marine methanogenic bacterium from the biofilm of a shiphull in Los Angeles harbor. Curr Microbiol 25:157–164CrossRefGoogle Scholar
  12. Boopathy R, Kulpa CF (1994) Biotransformation of 2,4,6-trinitrotoluene (TNT) by a Methanococcus sp. (strain B) isolated from a lake sediment. Can J Microbiol 40:273–278PubMedCrossRefGoogle Scholar
  13. Burggraf S, Fricke H, Neuner A, Kristjansson J, Rouvière P, Mandelco L, Woese CR, Stetter KO (1990) Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. Syst Appl Microbiol 13:263–269PubMedCrossRefGoogle Scholar
  14. Chaban B, Voisin S, Kelly J, Logan SM, Jarrell KF (2006) Identification of genes involved in the biosynthesis and attachment of Methanococcus voltae N-linked glycans: insight into N-linked glycosylation pathways in archaea. Mol Microbiol 61:259–268PubMedCrossRefGoogle Scholar
  15. Clementino MM, Vieira RP, Cardoso AM, Nascimento AP, Silveira CB, Riva TC, Gonzalez AS, Paranhos R, Albano RM, Ventosa A, Martins OB (2008) Prokaryotic diversity in one of the largest hypersaline coastal lagoons in the world. Extremophiles 12:595–604PubMedCrossRefGoogle Scholar
  16. Corder RE, Hook LA, Larkin JM, Frea JI (1983) Isolation and characterization of two new methane-producing cocci: Methanogenium olentangyi, sp. nov., and Methanococcus deltae, sp. nov. Arch Microbiol 134:28–32CrossRefGoogle Scholar
  17. Costa KC, Lie TJ, Jacobs MA, Leigh JA (2013) H2-independent growth of the hydrogenotrophic methanogen Methanococcus maripaludis. MBio 4:e00062–13PubMedCentralPubMedCrossRefGoogle Scholar
  18. Eichler J (2013) Extreme sweetness: protein glycosylation in archaea. Nat Rev Microbiol 11:151–156PubMedCrossRefGoogle Scholar
  19. Eiserling F, Pushkin A, Gingery M, Bertani G (1999) Bacteriophage-like particles associated with the gene transfer agent of Methanococcus voltae PS. J Gen Virol 80:3305–3308PubMedGoogle Scholar
  20. Ferrante G, Ekiel I, Sprott GD (1986) Structural characterization of the lipids of Methanococcus voltae, including a novel N-acetylglucosamine 1-phosphate diether. J Biol Chem 261:17062–17066PubMedGoogle Scholar
  21. Hamana K, Niitsu M, Samejima K, Itoh T, Hamana H, Shinozawa T (1998) Polyamines of the thermophilic eubacteria belonging to the genera Thermotoga, Thermodesulfovibrio, Thermoleophilum, Thermus, Rhodothermus and Meiothermus, and the thermophilic archaebacteria belonging to the genera Aeropyrum, Picrophilus, Methanobacterium and Methanococcus. Microbios 94:7–21Google Scholar
  22. Hendrickson EL, Kaul R, Zhou Y, Bovee D, Chapman P, Chung J, Conway de Macario E, Dodsworth JA, Gillett W, Graham DE, Hackett M, Haydock AK, Kang A, Land ML, Levy R, Lie TJ, Major TA, Moore BC, Porat I, Palmeiri A, Rouse G, Saenphimmachak C, Söll D, Van Dien S, Wang T, Whitman WB, Xia Q, Zhang Y, Larimer FW, Olson MV, Leigh JA (2004) Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J Bacteriol 186:6956–6969PubMedCentralPubMedCrossRefGoogle Scholar
  23. Hilpert R, Winter J, Hammes W, Kandler O (1981) The sensitivity of archaebacteria to antibiotics. Zbl Bakt Hyg I Abt Orig C 2:11–20Google Scholar
  24. Hippe H (1984) Maintenance of methanogenic bacteria. In: Kirsop BE, Snell JJS (eds) Maintenance of microorganisms: a manual of laboratory methods. Academic, London, pp 69–81Google Scholar
  25. Huber H, Thomm M, König H, Thies G, Stetter KO (1982) Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch Microbiol 132:47–50CrossRefGoogle Scholar
  26. Jarrell KF, Koval SF (1989) Ultrastructure and biochemistry of Methanococcus voltae. Crit Rev Microbiol 17:53–87PubMedCrossRefGoogle Scholar
  27. Jarrell KF, Stark M, Nair DB, Chong JPJ (2011) Flagella and pili are both necessary for efficient attachment of Methanococcus maripaludis to surfaces. FEMS Microbiol Lett 319:44–50PubMedCrossRefGoogle Scholar
  28. Jeanthon C, L’Haridon S, Reysenbach AL, Vernet M, Messner P, Sleytr UB, Prieur D (1998) Methanococcus infernus sp. nov., a novel hyperthermophilic lithotrophic methanogen isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48:913–919PubMedCrossRefGoogle Scholar
  29. Jeanthon C, L’Haridon S, Reysenbach A-L, Corre E, Vernet M, Messner P, Sleytr UB, Prieur D (1999) Methanococcus vulcanius sp. nov., a novel hyperthermophilic methanogen isolated from East Pacific Rise, and identification of Methanococcus sp. DSM 4213T as Methanococcus fervens sp. nov. Int J Syst Bacteriol 49:583–589PubMedCrossRefGoogle Scholar
  30. Jones WJ, Paynter MJB, Gupta R (1983a) Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment. Arch Microbiol 135:91–97CrossRefGoogle Scholar
  31. Jones WJ, Whitman WB, Fields RD, Wolfe RS (1983b) Growth and plating efficiency of methanococci on agar media. Appl Environ Microbiol 46:220–226PubMedCentralPubMedGoogle Scholar
  32. Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983c) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261CrossRefGoogle Scholar
  33. Judicial Commission of the International Committee on Systematic Bacteriology (1986) Opinion 62: Transfer of the type species of the genus Methanococcus to the genus Methanosarcina as Methanosarcina mazei (Barker 1936) comb. nov. et emend. Mah and Kuhn 1984 and conservation of the genus Methanococcus (Approved Lists, 1980) emend. Mah and Kuhn 1984 with Methanococcus vannielii (Approved Lists, 1980) as the type species. Int J Syst Bacteriol 36:491CrossRefGoogle Scholar
  34. Kelly J, Logan SM, Jarrell KF, VanDyke DJ, Vinogradov E (2009) A novel N-linked flagellar glycan from Methanococcus maripaludis. Carbohydr Res 344:648–653PubMedCrossRefGoogle Scholar
  35. Kendall MM, Liu Y, Sieprawska-Lupa M, Stetter KO, Whitman WB, Boone DR (2006) Methanococcus aeolicus sp. nov., a mesophilic, methanogenic archaeon from shallow and deep marine sediments. Int J Syst Evol Microbiol 56:1525–1529PubMedCrossRefGoogle Scholar
  36. Keswani J, Orkand S, Premachandran U, Mandelco L, Franklin MJ, Whitman WB (1996) Phylogeny and taxonomy of mesophilic Methanococcus spp. and comparison of rRNA, DNA hybridization, and phenotypic methods. Int J Syst Bacteriol 46:727–735PubMedCrossRefGoogle Scholar
  37. Kluyver AJ, van Niel CB (1936) Prospects for a natural system of classification of bacteria. Zentralbl Bakteriol Infektionskr Hyg Abt II 94:369–403Google Scholar
  38. Kneifel H, Stetter KO, Andreesen JR, Wiegel J, König H, Schoberth SM (1986) Distribution of polyamines in representative species of archaebacteria. Syst Appl Microbiol 7:241–245CrossRefGoogle Scholar
  39. Koga Y, Morii H, Akagawa-Matsushita M, Ohga M (1998) Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens. Further analysis of lipid component parts. Biosci Biotechnol Biochem 62:230–236CrossRefGoogle Scholar
  40. Koval SF, Jarrell FK (1987) Ultrastructure and biochemistry of the cell wall of Methanococcus voltae. J Bacteriol 169:1298–1306PubMedCentralPubMedGoogle Scholar
  41. Krupovič M, Forterre P, Bamford DH (2010) Comparative analysis of the mosaic genomes of tailed archaeal viruses and proviruses suggests common themes for virion architecture and assembly with tailed viruses of bacteria. J Mol Biol 397:144–160PubMedCrossRefGoogle Scholar
  42. Mah RA, Kuhn DA (1984) Transfer of the type species of the genus Methanococcus to the genus Methanosarcina, naming it Methanosarcina mazei (Barker 1936) comb. nov. et emend. and conservation of the genus Methanococcus (Approved Lists 1980) with Methanococcus vannielii (Approved Lists 1980) as the type species. Request for an opinion. Int J Syst Bacteriol 34:263–265CrossRefGoogle Scholar
  43. Mah RA, Smith MR (1981) The methanogenic bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The Prokaryotes. A handbook on habitats, isolation and identification of bacteria. Springer, New York, pp 948–977Google Scholar
  44. Metha MP, Baross JA (2006) Nitrogen fixation at 92 °C by a hydrothermal vent archaeon. Science 314:1783–1786CrossRefGoogle Scholar
  45. Nilsen RK, Torsvik T (1996) Methanococcus thermolithotrophicus isolated from North Sea oil field reservoir water. Appl Environ Microbiol 62:728–731PubMedCentralPubMedGoogle Scholar
  46. Patel GB, Nash JHE, Agnew BJ, Sprott GD (1994) Natural and electroporation-mediated transformation of Methanococcus voltae protoplasts. Appl Environ Microbiol 60:903–907PubMedCentralPubMedGoogle Scholar
  47. Purcell D, Sompong U, Yim LC, Barraclough TG, Peerapornpisal Y, Pointing SB (2007) The effects of temperature, pH and sulphide on the community structure of hyperthermophilic streamers in hot springs of northern Thailand. FEMS Microbiol Ecol 60:456–466PubMedCrossRefGoogle Scholar
  48. Robertson DE, Roberts MF, Belay N, Stetter KO, Boone DR (1990) Occurrence of β-glutamate, a novel osmolyte, in marine methanogenic bacteria. Appl Environ Microbiol 56:1504–1508PubMedCentralPubMedGoogle Scholar
  49. Robertson DE, Noll D, Roberts MF (1992) Free amino acid dynamics in marine methanogens. β-amino acids as compatible solutes. J Biol Chem 267:14893–14901PubMedGoogle Scholar
  50. Sarmiento F, Mrázek J, Whitman WB (2013) Genome-scale analysis of gene function in the hydrogenotrophic methanogenic archaeon Methanococcus maripaludis. Proc Natl Acad Sci USA 110:4726–4731PubMedCentralPubMedCrossRefGoogle Scholar
  51. Sitzmann J, Klein A (1991) Physical and genetic map of the Methanococcus voltae chromosome. Mol Microbiol 5:505–513PubMedCrossRefGoogle Scholar
  52. Sment KA, Konisky J (1989) Chemotaxis in the archaebacterium Methanococcus voltae. J Bacteriol 171:2870–2872PubMedCentralPubMedGoogle Scholar
  53. Souillard N, Sibold L (1986) Primary structure and expression of a gene homologous to nifH (nitrogenase Fe protein) from the archaebacterium Methanococcus voltae. Mol Gen Genet 203:21–28CrossRefGoogle Scholar
  54. Sowers KR (1995) Chromosomal maps of Methanococcus voltae and Methanobacterium thermoautotrophicum. In: Sowers KR, Schreier HJ (eds) Archaea: methanogens: a laboratory manual. Cold Spring Harbor Laboratory Press, Plainview, pp 491–496Google Scholar
  55. Sprott GD, Dicaire CJ, Choquet CG, Patel GB, Ekiel I (1993) Hydroxydiether lipid structures in Methanosarcina spp. and Methanococcus voltae. Appl Environ Microbiol 59:912–914PubMedCentralPubMedGoogle Scholar
  56. Stadtman TC, Barker HA (1951) Studies on the methane fermentation. X. A new formate-decomposing bacterium, Methanococcus vannielii. J Bacteriol 62:269–280PubMedCentralPubMedGoogle Scholar
  57. Takai K, Inoue A, Horikoshi K (2002) Methanothermococcus okinawensis sp. nov., a thermophilic, methane-producing archaeon isolated from a Western Pacific deep-sea hydrothermal vent system. Int J Syst Evol Microbiol 52:1089–1095PubMedCrossRefGoogle Scholar
  58. Tumbula DL, Keshwani J, Shieh J, Whitman WB (1995) Long-term maintenance of methanogenic stock cultures in glycerol. In: DasSarma S, Fleischmann EM (eds) Archaea. A laboratory manual. Cold Spring Harbor Laboratory Press, Plainview, pp 85–87Google Scholar
  59. VanDyke DJ, Wu J, Logan SM, Kelly JF, Mizuno S, Aizawa S, Jarrell KF (2009) Identification of genes involved in the assembly and attachment of a novel flagellin N-linked tetrasaccharide important for motility in the archaeon Methanococcus maripaludis. Mol Microbiol 72:633–644PubMedCrossRefGoogle Scholar
  60. Voisin S, Houliston RS, Kelly J, Brisson R, Watson D, Brady SL, Jarrell KF, Logan SM (2005) Identification and characterization of the unique N-linked glycan common to the flagellins and S-layer glycoprotein of Methanococcus voltae. J Biol Chem 280:16586–16593PubMedCrossRefGoogle Scholar
  61. Wang X, Greenfield P, Li D, Hendry P, Volk H, Sutherland TD (2011) Complete genome sequence of a nonculturable Methanococcus maripaludis strain extracted in a metagenomic survey of petroleum reservoir fluids. J Bacteriol 193:5595PubMedCentralPubMedCrossRefGoogle Scholar
  62. Ward JM, Smith PH, Boone DR (1989) Emended description of strain PS (= OGC 70 = ATCC 33273 = DSM 1537), the type strain of Methanococcus voltae. Int J Syst Bacteriol 39:493–494CrossRefGoogle Scholar
  63. Wayne LG (1986) Actions of the judicial commission of the international committee on systematic bacteriology on requests for opinions published in 1983 and 1984. Int J Syst Bacteriol 36:357–358CrossRefGoogle Scholar
  64. Whitman WB (2001a) Genus I. Methanococcus Kluyver and van Niel 1936, 400, emend. Barker 1936, 430,AL Mah and Kuhn 1984b, 264 (Nom. Cons., Opinion 62 of the Jud. Comm. 1986a, 491) emend. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn, The Archaea and the deeply branching and phototrophic Bacteria. Springer, New York, pp 236–240Google Scholar
  65. Whitman WB (2001b) Genus II. Methanothermococcus gen. nov. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn, The Archaea and the deeply branching and phototrophic Bacteria. Springer, New York, pp 241–242Google Scholar
  66. Whitman WB (2001c) Genus I. Methanocaldococcus gen. nov. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn, The Archaea and the deeply branching and phototrophic Bacteria. Springer, New York, pp 243–245Google Scholar
  67. Whitman WB (2001d) Genus II Methanotorris gen. nov. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn, The Archaea and the deeply branching and phototrophic Bacteria. Springer, New York, pp 245–246Google Scholar
  68. Whitman WB, Jeanthon C (2006) Methanococcales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes, a handbook on the biology of bacteria: ecophysiology and biochemistry, vol 3, 3rd edn. Springer, New York, pp 257–273Google Scholar
  69. Whitman WB, Ankwanda E, Wolfe RS (1982) Nutrition and carbon metabolism of Methanococcus voltae. J Bacteriol 149:852–863PubMedCentralPubMedGoogle Scholar
  70. Whitman WB, Shieh J, Sohn S, Caras DS, Premachandran U (1986) Isolation and characterization of 22 mesophilic methanococci. Syst Appl Microbiol 7:235–240CrossRefGoogle Scholar
  71. Whitman WB, Boone DR, Koga Y (2001a) Order I. Methanococcales Balch and Wolfe 1981, 216VP (Effective publication: Balch and Wolfe in Balch, Magrum, Woese and Wolfe 1979, 285). In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn, The Archaea and the deeply branching and phototrophic Bacteria. Springer, New York, p 236Google Scholar
  72. Whitman WB, Boone DR, Koga Y (2001b) Family I. Methanococcaceae Balch and Wolfe 1981, 216VP (Effective publication: Balch and Wolfe in Balch, Magrum, Woese and Wolfe 1979, 285) emend. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn, The Archaea and the deeply branching and phototrophic Bacteria. Springer, New York, p 236Google Scholar
  73. Whitman WB, Bowen TL, Boone DR (2006) The methanogenic bacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes. A handbook on the biology of bacteria: ecophysiology and biochemistry, vol 3. Springer, New York, pp 165–207Google Scholar
  74. Wilharm T, Zhilina TN, Hummel P (1991) DNA-DNA hybridization of methylotrophic halophilic methanogenic bacteria and transfer of Methanococcus halophilus VP to the genus Methanohalophilus as Methanohalophilus halophilus comb. nov. Int J Syst Bacteriol 41:558–562CrossRefGoogle Scholar
  75. Winter J (1983) Maintenance of stock cultures of methanogens in the laboratory. Syst Appl Microbiol 4:558–563PubMedCrossRefGoogle Scholar
  76. Wood AG, Whitman WB, Konisky J (1989) Isolation and characterization of an archaebacterial viruslike particle from Methanococcus voltae A3. J Bacteriol 171:93–98PubMedCentralPubMedGoogle Scholar
  77. Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer KH, Glöckner FO, Rosselló-Móra R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299PubMedCrossRefGoogle Scholar
  78. Zhilina TN (1984) A new obligate halophilic methane-producing bacterium. Mikrobiologiya 52:375–382 (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Plant and Environmental SciencesThe Institute of Life Sciences, The Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations