The Family Sulfolobaceae

  • Sonja-Verena AlbersEmail author
  • Bettina Siebers
Reference work entry


All members of the Sulfolobaceae isolated so far are thermoacidophiles adapted to low pH environments and high temperature. They are ubiquitous and have been isolated from terrestrial volcanic and thermal active areas, such as hot acidic solfataric or mud springs. The thermoacidophilic lifestyle requires unique adaptation strategies since organisms have to cope simultaneously with two challenges: high temperatures including wide temperature fluctuations (>60 up to >100 °C) and low pH values (<4).

Family members of the Sulfolobaceae are characterized by a diverse metabolism ranging from an aerobic, facultative anaerobic, or obligate anaerobic and a chemolithoautotrophic or chemoorganoheterotrophic lifestyle. Based on their growth in low ionic strength environments (low pH), the optimal growth occurs at low NaCl concentration, with the exception of Acidianus, which can grow up to 4 % (w/v) NaCl.

The family consists of the five genera Sulfolobus (ten species), Acidianus (seven species), Metallosphaera (three species), Stygioglobus, and Sulfurisphaera (one species each).

The Sulfolobaceae are a rich source for the isolation of plasmids and numerous n’ (enzymes stable and active under harsh conditions) for biotechnological applications.


Quinone Oxidoreductase Terminal Oxidase Reduce Sulfur Compound Obligate Aerobe Rieske Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Sonja Fleissner, Benjamin Meyer, Alvaro Orell, Xiaoqing Ma, Julia Kort, Anna Hagemann, Bernadette Rauch, Dominik Esser, Christopher Bräsen, and Theresa Kouril, for technical support. We are grateful for the comments we received from Arnulf Kletzin. SVA received funds from the Max Planck Society, and BS was supported by the Deutsche Forschungsgemeinschaft (DFG) and the Bundesministerium fuer Bildung und Forschung (BMBF) within the Sulfolobus Systems Biology “SulfoSYS” project (SysMO initiative).


  1. Ahmed H et al (2005) The semi-phosphorylative Entner-Doudoroff pathway in hyperthermophilic archaea: a re-evaluation. Biochem J 390:529–540PubMedCentralPubMedGoogle Scholar
  2. Ahmed H, Tjaden B, Hensel R, Siebers B (2004) Embden-Meyerhof-Parnas and Entner-Doudoroff pathways in Thermoproteus tenax: metabolic parallelism or specific adaptation? Biochem Soc Trans. 32(Pt 2):303–4.PubMedGoogle Scholar
  3. Ajon M et al (2011) UV-inducible DNA exchange in hyperthermophilic archaea mediated by type IV pili. Mol Microbiol 82:807–817PubMedGoogle Scholar
  4. Aravind L, Koonin EV (1999) DNA-binding proteins and evolution of transcription regulation in the archaea. Nucleic Acids Res. 1;27(23):4658–70.Google Scholar
  5. Alber B et al (2006) Malonyl-coenzyme a reductase in the modified 3-hydroxypropionate cycle for autotrophic carbon fixation in archaeal Metallosphaera and Sulfolobus spp. J Bacteriol 188:8551–8559PubMedCentralPubMedGoogle Scholar
  6. Alber BE et al (2008) 3-Hydroxypropionyl-coenzyme a synthetase from metallosphaera sedula, an enzyme involved in autotrophic CO2 fixation. J Bacteriol 190:1383–1389PubMedCentralPubMedGoogle Scholar
  7. Albers SV, Driessen AM (2002) Signal peptides of secreted proteins of the archaeon Sulfolobus solfataricus: a genomic survey. Arch Microbiol 177:209–216PubMedGoogle Scholar
  8. Albers SV, Driessen AM (2008) Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome. Archaea 2:145–149PubMedCentralPubMedGoogle Scholar
  9. Albers SV, Meyer BH (2011) The archaeal cell envelope. Nat Rev Microbiol 9:414–426PubMedGoogle Scholar
  10. Albers SV et al (1999) Glucose transport in the extremely thermoacidophilic Sulfolobus solfataricus involves a high-affinity membrane-integrated binding protein. J Bacteriol 181:4285–4291PubMedCentralPubMedGoogle Scholar
  11. Albers SV et al (2003) Archaeal homolog of bacterial type IV prepilin signal peptidases with broad substrate specificity. J Bacteriol 185:3918–3925PubMedCentralPubMedGoogle Scholar
  12. Albers SV et al (2009) SulfoSYS (sulfolobus systems biology): towards a silicon cell model for the central carbohydrate metabolism of the archaeon sulfolobus solfataricus under temperature variation. Biochem Soc Trans 37:58–64PubMedGoogle Scholar
  13. Andersson AF et al (2006) Global analysis of mRNA stability in the archaeon Sulfolobus. Genome Biol 7:R99PubMedCentralPubMedGoogle Scholar
  14. Anemüller S et al (1985) The respiratory system of Sulfolobus acidocaldarius, a thermoacidophilic archaebacterium. FEBS Lett 193:83–87Google Scholar
  15. Aravind L (1999) DNA-binding proteins and evolution of transcription regulation in the archaea. Nucleic Acids Res 27:4570–4658Google Scholar
  16. Arnold HP, Zillig W et al (2000a) A novel lipothrixvirus, SIFV, of the extremely thermophilic crenarchaeon Sulfolobus. Virology 267:252–266PubMedGoogle Scholar
  17. Arnold HP, Ziese U et al (2000b) SNDV, a novel virus of the extremely thermophilic and acidophilic archaeon Sulfolobus. Virology 272:409–416PubMedGoogle Scholar
  18. Auernik KS et al (2008) The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism. Appl Environ Microbiol 74:682–692PubMedCentralPubMedGoogle Scholar
  19. Bandeiras TM et al (2002) Acidianus ambivalens type-II NADH dehydrogenase: genetic characterisation and identification of the flavin moiety as FMN. FEBS Lett 531:273–277PubMedGoogle Scholar
  20. Bandeiras TM et al (2003) The respiratory chain of the thermophilic archaeon Sulfolobus metallicus: studies on the type-II NADH dehydrogenase. Biochim Biophys Acta 1557:13–19PubMedGoogle Scholar
  21. Bandeiras TM et al (2009) The cytochrome ba complex from the thermoacidophilic crenarchaeote Acidianus ambivalens is an analog of bc(1) complexes. Biochim Biophys Acta 1787:37–45PubMedGoogle Scholar
  22. Bandeiras TM et al. (2013) In-House SAD Phasing of an unique thermophilic Rieske Ferredoxin containing a stabilizing disulfide bridge. Acta Crystallogr Sect F Struct Biol Cryst Commun. 1;69(Pt 5):555–8.Google Scholar
  23. Bardy SL, Jarrell KF (2002) FlaK of the archaeon Methanococcus maripaludis possesses preflagellin peptidase activity. FEMS Microbiol Lett 208:53–59PubMedGoogle Scholar
  24. Bartolucci S et al (1987) Malic enzyme from archaebacterium Sulfolobus solfataricus. Purification, structure, and kinetic properties. J Biol Chem 262:7725–7731PubMedGoogle Scholar
  25. Bathe S, Norris PR (2007) Ferrous iron- and sulfur-induced genes in Sulfolobus metallicus. Appl Environ Microbiol 73:2491–2497PubMedCentralPubMedGoogle Scholar
  26. Baumeister W, Lembke G (1992) Structural features of archeabacterial cell envelopes. J Bioenerg Biomem 24:567–575Google Scholar
  27. Bell SD (2005) Archaeal transcriptional regulation–variation on a bacterial theme? Trends Microbiol 13:262–265PubMedGoogle Scholar
  28. Bell SD, Jackson SP (1998a) Transcription and translation in archaea a mosaic of eukaryal and bacterial features. Trends Microbiol 6:222–228PubMedGoogle Scholar
  29. Bell SD, Jackson SP (1998b) Transcription in archaea. Cold Spring Harb Symp Quant Biol 63:41–51PubMedGoogle Scholar
  30. Bell SD, Jackson SP (2001) Mechanism and regulation of transcription in archaea. Curr Opin Microbiol 4:208–213PubMedGoogle Scholar
  31. Bell SD et al (1999) Orientation of the transcription preinitiation complex in archaea. Proc Natl Acad Sci USA 96:13662–13667PubMedCentralPubMedGoogle Scholar
  32. Berg IA et al (2007) A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in archaea. Science 318:1782–1786PubMedGoogle Scholar
  33. Berg IA et al (2010) Autotrophic carbon fixation in archaea. Nat Rev Microbiol 8:447–460PubMedGoogle Scholar
  34. Berkner S et al (2007) Small multicopy, non-integrative shuttle vectors based on the plasmid pRN1 for Sulfolobus acidocaldarius and Sulfolobus solfataricus, model organisms of the (cren-)archaea. Nucleic Acids Res 35:88Google Scholar
  35. Berkner S et al (2010) Inducible and constitutive promoters for genetic systems in Sulfolobus acidocaldarius. Extremophiles 14:249–259PubMedCentralPubMedGoogle Scholar
  36. Bettstetter M et al (2003) AFV1, a novel virus infecting hyperthermophilic archaea of the genus Acidianus. Virology 315:68–79PubMedGoogle Scholar
  37. Bize A et al (2008) Viruses in acidic geothermal environments of the Kamchatka peninsula. Res Microbiol 159:358–366PubMedGoogle Scholar
  38. Blackwood JK et al (2011) Structural and functional insights into DNA-end processing by the archaeal HerA helicase-NurA nuclease complex. Nucleic Acids Res 40:3183–3196PubMedCentralPubMedGoogle Scholar
  39. Blombach F et al (2009) Identification of an ortholog of the eukaryotic RNA polymerase III subunit RPC34 in Crenarchaeota and Thaumarchaeota suggests specialization of RNA polymerases for coding and non-coding RNAs in Archaea. Biol Direct 4:39PubMedCentralPubMedGoogle Scholar
  40. Breton JL et al (1995) Identification of the iron-sulfur clusters in a ferredoxin from the archaeon Sulfolobus acidocaldarius. Evidence for a reduced [3Fe-4S] cluster with pH-dependent electronic properties. Eur J Biochem 233:937–946PubMedGoogle Scholar
  41. Brierley C, Brierley JA (1973) A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring. Can J Microbiol 18:183–188Google Scholar
  42. Brinkman AB et al (2002) The Sulfolobus solfataricus Lrp-like Protein LysM Regulates Lysine biosynthesis in response to Lysine availability. J Biol Chem 277:29537–29549PubMedGoogle Scholar
  43. Brito JA et al (2009) Structural and functional insights into sulfide:quinone oxidoreductase. Biochem 48:5613–5622Google Scholar
  44. Brock TD et al (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84:54–68PubMedGoogle Scholar
  45. Brouns SJ et al (2006) Identification of the missing links in prokaryotic pentose oxidation pathways. J Biol Chem 281:27378–27388PubMedGoogle Scholar
  46. Cadillo-Quiroz H et al (2012) Patterns of gene flow define species of thermophilic Archaea. PLoS Biol 10:e1001265PubMedCentralPubMedGoogle Scholar
  47. Camacho ML et al (1995) Isocitrate dehydrogenases from Haloferax volcanii and Sulfolobus solfataricus: Enzyme purification, characterisation and N-terminal sequence. FEMS Microbiol Lett 134:85–90PubMedGoogle Scholar
  48. Cardona S et al (2001) The glycogen-bound polyphosphate kinase from Sulfolobus acidocaldarius is actually a Glycogen synthase. Appl Environ Microbiol 67:4773–4780PubMedCentralPubMedGoogle Scholar
  49. Chen L et al (2005a) The genome of Sulfolobus acidocaldarius, a model organism of the crenarchaeota. J Bacteriol 187:4992–4999PubMedCentralPubMedGoogle Scholar
  50. Chen ZW et al (2005b) Key role of cysteine residues in catalysis and subcellular localization of sulfur oxygenase-reductase of Acidianus tengchongensis. Appl Environ Microbiol 71:621–628PubMedCentralPubMedGoogle Scholar
  51. Chu H-M, Wang AH (2007) Enzyme-substrate interactions revealed by the crystal structures of the archaeal Sulfolobus PTP-fold phosphatase and its phosphopeptide complexes. Proteins 66:996–1003PubMedGoogle Scholar
  52. Cielo CB et al (2010) Structure of ST0929, a putative glycosyl transferase from Sulfolobus tokodaii. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:397–400PubMedCentralPubMedGoogle Scholar
  53. Collins MD, Langworthy TA (1983) Respiratory quinone composition of some acidophilic bacteria. Syst Appl Microbiol 4:295–304PubMedGoogle Scholar
  54. Constantinesco F et al (2002) NurA, a novel 5’-3’ nuclease gene linked to rad50 and mre11 homologs of thermophilic Archaea. EMBO Rep 3:537–542PubMedCentralPubMedGoogle Scholar
  55. Constantinesco F et al (2004) A bipolar DNA helicase gene, herA, clusters with rad50, mre11 and nurA genes in thermophilic archaea. Nucleic Acids Res 32:1439–1447PubMedCentralPubMedGoogle Scholar
  56. Cosper MM et al (2002) The [4Fe-4S](2+) cluster in reconstituted biotin synthase binds S-adenosyl-l-methionine. J Am Chem Soc 124:14006–14007PubMedGoogle Scholar
  57. Danson MJ et al (1985) Citric acid cycle enzymes of the archaebacteria: citrate synthase and succinate thiokinase. FEBS Lett 179:120–124Google Scholar
  58. De Pascale D et al (2001) Recombinant thermophilic enzymes for trehalose and trehalosyl dextrins production. J Mol Cat B Enzym 11:777–786Google Scholar
  59. De Rosa M et al (1977) Caldariellaquinone, a unique benzo(b)thiophen-4,7-quinone from Caldariella acidophila, an extremely thermophilic and acidophilic bacterium. J Chem Soc Perkin 1 1:653–657Google Scholar
  60. Deatherage JF et al (1983) Three-dimensional arrangement of the cell wall protein of Sulfolobus acidocaldarius. J Mol Biol 167:823–852PubMedGoogle Scholar
  61. Deng L et al (2009) Unmarked gene deletion and host-vector system for the hyperthermophilic crenarchaeon Sulfolobus islandicus. Extremophiles 13:735–746PubMedGoogle Scholar
  62. Di Lernia I et al (1998) Enzymes from Sulfolobus shibatae for the production of trehalose and glucose from starch. Extremophiles 2:409–416PubMedGoogle Scholar
  63. Elferink MG et al (2001) Sugar transport in Sulfolobus solfataricus is mediated by two families of binding protein-dependent ABC transporters. Mol Microbiol 39:1494–1503PubMedGoogle Scholar
  64. Ellen AF et al (2010) Comparative study of the extracellular proteome of Sulfolobus species reveals limited secretion. Extremophiles 14:87–98PubMedCentralPubMedGoogle Scholar
  65. Ellen AF et al (2011) The sulfolobicin genes of Sulfolobus acidocaldarius encode novel antimicrobial proteins. J Bacteriol 193:4380–4387PubMedCentralPubMedGoogle Scholar
  66. Esser D et al (2012) Change of carbon source causes dramatic effects in the phospho-proteome of the Archaeon Sulfolobus solfataricus. J Proteome Res 11:4823–4833PubMedGoogle Scholar
  67. Ettema TJ et al (2004) Identification and functional verification of archaeal-type phosphoenolpyruvate carboxylase, a missing link in archaeal central carbohydrate metabolism. J Bacteriol 186:7754–7762PubMedCentralPubMedGoogle Scholar
  68. Ettema TJ et al (2008) The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) of Sulfolobus solfataricus: a key-enzyme of the semi-phosphorylative branch of the Entner-Doudoroff pathway. Extremophiles 12:75–88PubMedGoogle Scholar
  69. Fang TY et al (2006) Expression, purification, and characterization of the maltooligosyltrehalose trehalohydrolase from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092. J Agric Food Chem 54:7105–7112PubMedGoogle Scholar
  70. Frazão C et al (2008) Crystallographic analysis of the intact metal centres [3Fe-4S](1+/0) and [4Fe-4S](2+/1+) in a Zn(2+) -containing ferredoxin. FEBS Lett 582:763–767PubMedGoogle Scholar
  71. Frols S et al (2008) UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation. Mol Microbiol 70:938–952PubMedGoogle Scholar
  72. Fuchs T et al (1996a) 16S rDNA-based phylogeny of the archaeal order sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb nov. Syst Appl Microbiol 19:56–60Google Scholar
  73. Fuchs T et al (1996b) Metallosphaera prunae, sp nov, a novel metal-mobilizing, thermoacidophilic archaeum, isolated from a uranium mine in Germany. Syst Appl Microbiol 18:560–566Google Scholar
  74. Fujii T et al (1996) Novel zinc-binding centre in thermoacidophilic archaeal ferredoxins. Nat Struct Biol 3:834–837PubMedGoogle Scholar
  75. Geiduschek EP, Ouhammouch M (2005) Archaeal transcription and its regulators. Mol Microbiol 56:1397–1407PubMedGoogle Scholar
  76. Giuffrè A et al (1997) Functional properties of the quinol oxidase from Acidianus ambivalens and the possible catalytic role of its electron donor. Eur J Biochem 250:383–388PubMedGoogle Scholar
  77. Gleissner M et al (1997) The archaeal SoxABCD complex is a proton pump in Sulfolobus acidocaldarius. J Biol Chem 272:8417–8426PubMedGoogle Scholar
  78. Gogliettino M et al (2010) A highly selective oligopeptide binding protein from the archaeon Sulfolobus solfataricus. J Bacteriol 192:3123–3131PubMedCentralPubMedGoogle Scholar
  79. Gomes C et al (1998a) Di-cluster, seven-iron ferredoxins from hyperthermophilic sulfolobales. J Biol Inorg Chem 3:499–507Google Scholar
  80. Gomes C et al (1998b) Evidence for a novel type of iron cluster in the respiratory chain of the archaeon sulfolobus metallicus. FEBS Lett 432:99–102PubMedGoogle Scholar
  81. Gomes C et al (1999) The unusual iron sulfur composition of the Acidianus ambivalens succinate dehydrogenase complex. Biochim Biophys Acta 1411:134–141PubMedGoogle Scholar
  82. Gomes C et al (2001) A New Type-II NADH dehydrogenase from the archaeon Acidianus ambivalens: characterization and in vitro reconstitution of the respiratory chain. J Bioenerg Biomembr 3(3):1–8Google Scholar
  83. Gotz D et al (2007) Responses of hyperthermophilic crenarchaea to UV irradiation. Genome Biol 8:R220PubMedCentralPubMedGoogle Scholar
  84. Greve B et al (2004) Genomic comparison of archaeal conjugative plasmids from sulfolobus. Archaea 1:231–239PubMedCentralPubMedGoogle Scholar
  85. Greve B et al (2005) Novel RepA-MCM proteins encoded in plasmids pTAU4, pORA1 and pTIK4 from Sulfolobus neozealandicus. Archaea 1:319–325PubMedCentralPubMedGoogle Scholar
  86. Grochowski LL, White RH (2008) Promiscuous anaerobes. Ann N Y Acad Sci 1125:190–214PubMedGoogle Scholar
  87. Grogan DW (1989) Phenotypic characterization of the Archaebacterial genus Sulfolobus: comparison of five wild-type strains. J Bacteriol 171:6710–6719PubMedCentralPubMedGoogle Scholar
  88. Grogan D (2004) Stability and repair of DNA in hyperthermophilic archaea. Curr Issues Mol Biol 6:137–144PubMedGoogle Scholar
  89. Grogan D et al (1990) Isolate B12, which harbours a virus-like element, represents a new species of the archaebacterial genus Sulfolobus, Sulfolobus shibatae, sp. nov. Arch Microbiol 154:594–599PubMedGoogle Scholar
  90. Grogan D et al (2001) Genetic fidelity under harsh conditions: analysis of spontaneous mutation in the thermoacidophilic archaeon sulfolobus acidocaldarius. Proc Natl Acad Sci USA 98:7928–7933PubMedCentralPubMedGoogle Scholar
  91. Grohmann D, Werner F (2011) Recent advances in the understanding of archaeal transcription. Curr Opin Microbiol 14:328–334PubMedGoogle Scholar
  92. Gueguen Y et al (2001) Characterization of the maltooligosyl trehalose synthase from the thermophilic archaeon Sulfolobus acidocaldarius. FEMS Microbiol Lett 194:201–206PubMedGoogle Scholar
  93. Haile JD, Kennelly PJ (2011) The activity of an ancient atypical protein kinase is stimulated by ADP-ribose in vitro. Arch Biochem Biophys 511:56–63PubMedGoogle Scholar
  94. Haldenby S et al (2009) RecA family proteins in archaea: RadA and its cousins. Biochem Soc Trans 37:102–107PubMedGoogle Scholar
  95. Happonen LJ et al (2010) Familial relationships in hyperthermo- and acidophilic archaeal viruses. J Virol 84:4747–4754PubMedCentralPubMedGoogle Scholar
  96. Häring M et al (2005a) Independent virus development outside a host. Nature 436:1101–1102PubMedGoogle Scholar
  97. Häring M et al (2005b) Viral diversity in Hot springs of pozzuoli, italy, and characterization of a unique archaeal virus, acidianus bottle-shaped virus, from a New family, the ampullaviridae. J Bacteriol 79:9904–9911Google Scholar
  98. Häring M et al (2005c) Structure and genome organization of AFV2, a novel archaeal lipothrixvirus with unusual terminal and core. J Bacteriol 187:3855–3858PubMedCentralPubMedGoogle Scholar
  99. He ZG et al (2004) Acidianus tengchongensis sp. nov., a new species of acidothermophilic archaeon isolated from an acidothermal spring. Curr Microbiol 48:159–163PubMedGoogle Scholar
  100. Heath C et al (2007) The 2-oxoacid dehydrogenase multi-enzyme complex of the archaeon Thermoplasma acidophilum − recombinant expression, assembly and characterization. FEBS J 274:5406–5415PubMedGoogle Scholar
  101. Henche A-L et al (2012a) Influence of cell surface structures on crenarchaeal biofilm formation using a thermostable green fluorescent protein. Environ Microbiol 14:779–793PubMedGoogle Scholar
  102. Henche AL et al (2012b) Structure and function of the adhesive type IV pilus of Sulfolobus acidocaldarius. Environ Microbiol 14:3188–3202PubMedCentralPubMedGoogle Scholar
  103. Hiller A et al (2003) New genes encoding subunits of a cytochrome bc1-analogous complex in the respiratory chain of the hyperthermoacidophilic crenarchaeon Sulfolobus acidocaldarius. J Bioener Biomem 35:121–131Google Scholar
  104. Hinrichs M et al (1999) Functional characterization of an extremely thermophilic ATPase in membranes of the crenarchaeon Acidianus ambivalens. Biol Chem 380:1063–1069PubMedGoogle Scholar
  105. Hirata A et al (2008) The X-ray crystal structure of RNA polymerase from archaea. Nature 451:851–854PubMedCentralPubMedGoogle Scholar
  106. Hochstein L, Stan-Lotter H (1992) Purification and properties of an ATPase from Sulfolobus solfataricus. Arch Biochem Biophys 295:153–160PubMedGoogle Scholar
  107. Hopkins BB, Paull TT (2008) The P. furiosus mre11/rad50 complex promotes 5’ strand resection at a DNA double-strand break. Cell 135:250–260PubMedCentralPubMedGoogle Scholar
  108. Huber H, Prangishvili D (2006) Sulfolobales. In: Dworkin M et al (eds) A handbook on the biology of bacteria, vol 3, 3rd edn, Archaea. Bacteria: firmicutes, actinomycetes. Springer, New York, pp 23–51Google Scholar
  109. Huber G, Stetter KO (1991) Sulfolobus metallicus, sp. nov., a novel strictly chemolithoautotrophic thermophilic archaeal species of metal-mobilizers. Syst Appl Microbiol 14:372–378Google Scholar
  110. Huber G et al (1989) Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archeabacteria. Syst Appl Microbiol 12:38–47Google Scholar
  111. Hügler M et al (2003) Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch Microbiol 179:160–173PubMedGoogle Scholar
  112. Iwasaki T (2010) Iron-sulfur world in aerobic and hyperthermoacidophilic archaea Sulfolobus. Archaea 842639Google Scholar
  113. Iwasaki T et al (1995) Resolution of the aerobic respiratory system of the thermoacidophilic archaeon, Sulfolobus sp. Strain 7. J Biol Chem 270:30881–30892PubMedGoogle Scholar
  114. Iwasaki T et al (1996) Redox-linked ionization of sulredoxin, an archaeal Rieske-type [2Fe-2S] protein from Sulfolobus sp. strain 7. J Biol Chem 271:27659–27663PubMedGoogle Scholar
  115. Jackson S (1999) Transcription initiation in archaea facts, factors and future aspects. Mol Microbiol 31:1295–1305Google Scholar
  116. Jackson SP, Bell SD (1998) Transcription in archaea. Cold Spring Harb Symp Quant Biol 63:41–52PubMedGoogle Scholar
  117. Jan RL et al (1999) A novel species of thermoacidophilic archaeon, Sulfolobus yangmingensis sp. nov. Int J Syst Bacteriol 4:1809–1816Google Scholar
  118. Janssen S et al (2001) Ferredoxins from the archaeon Acidianus ambivalens: overexpression and characterization of the non-zinc-containing ferredoxin FdB. Biol Chem 382:1501–1507PubMedGoogle Scholar
  119. Jarrell KF, Albers SV (2012) The archaellum: an old structure with a new name. Trends Microbiol 20:307–312PubMedGoogle Scholar
  120. Joshua CJ et al (2011) Absence of diauxie during simultaneous utilization of glucose and xylose by Sulfolobus acidocaldarius. J Bacteriol 193:1293–1301PubMedCentralPubMedGoogle Scholar
  121. Kang HK et al (2008) Enzymatic synthesis of dimaltosyl-Î2-cyclodextrin via a transglycosylation reaction using TreX, a Sulfolobus solfataricus P2 debranching enzyme. Biochem Biophys Res Commun 366:98–103PubMedGoogle Scholar
  122. Karavaĭko GI et al (1995) Sulfurococcus yellowstonii sp. nov/–a new species of iron- and sulfur-oxidizing thermoacidophilic Archaeobacterium. Mikrobiologiia 63:668–682Google Scholar
  123. Kawarabayasi Y et al (2001) Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7. DNA Res 8:123–140PubMedGoogle Scholar
  124. Keeling PJ et al (1996) Complete nucleotide sequence of the Sulfolobus islandicus multicopy plasmid pRN1. Plasmid 35:141–144PubMedGoogle Scholar
  125. Kelman Z, White MF (2005) Archaeal DNA replication and repair. Curr Opin Microbiol 8:669–676PubMedGoogle Scholar
  126. Kennelly PJ (2003) Archaeal protein kinases and protein phosphatases: insights from genomics and biochemistry. Biochem J 370:373–389PubMedCentralPubMedGoogle Scholar
  127. Kerscher L et al (1982) Thermoacidophilic archaebacteria contain bacterial-type ferredoxins acting as electron acceptors of 2-oxoacid: ferredoxin oxidoreductases. Eur J Biochem 128:223–230PubMedGoogle Scholar
  128. Kim D, Forst S (2001) Genomic analysis of the histidine kinase family in bacteria and archaea. Microbiology 147:1197–1212PubMedGoogle Scholar
  129. Kim VTT et al (2007) Cloning and characterization of glycogen-debranching enzyme from hyperthermophilic archaeon Sulfolobus shibatae. J Microbiol Biotechnol 17:792–799PubMedGoogle Scholar
  130. Kletzin A (1989) Coupled enzymatic production of sulfite, thiosulfate, and hydrogen sulfide from sulfur: purification and properties of a sulfur oxygenase reductase from the facultatively anaerobic archaebacterium Desulfurolobus ambivalens. J Bacteriol 171:1638–1643PubMedCentralPubMedGoogle Scholar
  131. Kletzin A et al (1999) Molecular analysis of pDL10 from Acidianus ambivalens reveals a family of related plasmids from extremely thermophilic and acidophilic archaea. Genetics 152:1307–1314PubMedCentralPubMedGoogle Scholar
  132. Kletzin A et al (2005) A Rieske ferredoxin typifying a subtype within rieske proteins: spectroscopic, biochemical and stability studies. FEBS Lett 579:1020–1026PubMedGoogle Scholar
  133. Kobayashi K et al (1996) Gene cloning and expression of new trehalose-producing enzymes from the hyperthermophilic archaeum Sulfolobus solfataricus KM1. Biosci Biotechnol Biochem 60:1882–1885PubMedGoogle Scholar
  134. Koenig H et al (1982) Glycogen in thermoacidophilic archaebacteria of the genera Sulfolobus, Thermoproteus, Desulfurococcus and Thermococcus. Arch Microbiol 132:297–303Google Scholar
  135. Koerdt A et al (2010) Crenarchaeal biofilm formation under extreme conditions. PLoS One 5:e14104PubMedCentralPubMedGoogle Scholar
  136. Koerdt A et al (2011) Macromolecular fingerprinting of sulfolobus species in biofilm: a transcriptomic and proteomic approach combined with spectroscopic analysis. J Proteome Res 10:4105–4119PubMedCentralPubMedGoogle Scholar
  137. Koerdt A et al (2012) Complementation of Sulfolobus solfataricus PBL2025 with an α-mannosidase: effects on surface attachment and biofilm formation. Extremophiles 16:115–125PubMedGoogle Scholar
  138. Komorowski L et al (2002) The archaeal respiratory supercomplex SoxM from S. acidocaldarius combines features of quinole and cytochrome c oxidases. Biol Chem 383:1791–1799PubMedGoogle Scholar
  139. Konishi J et al (1987) Purification and properties of the ATPase solubilized from membranes of a thermoacidophilic archaebacterium, Sulfolobus acidocaldarius. J Biochem 102:1379–1387PubMedGoogle Scholar
  140. Koonin EV et al (2007) Orthologs of the small RPB8 subunit of the eukaryotic RNA polymerases are conserved in hyperthermophilic Crenarchaeota and “Korarchaeota”. Biol Direct 2:38PubMedCentralPubMedGoogle Scholar
  141. Koretke KK et al (2000) Evolution of two-component signal transduction. Mol Biol Evol 17:1956–1970PubMedGoogle Scholar
  142. Korkhin Y et al (2009) Evolution of complex RNA polymerases: the complete archaeal RNA polymerase structure. PLoS Biol 7:e1000Google Scholar
  143. Kounosu A et al (2010) Crystallization and preliminary X-ray diffraction studies of hyperthermophilic archaeal Rieske-type ferredoxin (ARF) from Sulfolobus solfataricus P1. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:842–845PubMedCentralPubMedGoogle Scholar
  144. Kouril T et al (2008) A novel trehalose synthesizing pathway in the hyperthermophilic Crenarchaeon Thermoproteus tenax: the unidirectional TreT pathway. Arch Microbiol 190:355–369PubMedGoogle Scholar
  145. Kurosawa N et al (1998a) Sulfurisphaera ohwakuensis gen. nov., sp. nov., a novel extremely thermophilic acidophile of the order Sulfolobales. Int J Syst Bacteriol 20:451–456Google Scholar
  146. Kurosawa N et al (1998b) Sulfurisphaera ohwakuensis gen. nov., sp. nov., a novel extremely thermophilic acidophile of the order Sulfolobales. Int J Syst Bacteriol 48:451–456PubMedGoogle Scholar
  147. Kurosawa N et al (2003) Reclassification of Sulfolobus hakonensis Takayanagi et al. 1996 as Metallosphaera hakonensis comb. nov based on phylogenetic evidence and DNA G+C content. Int J Syst Evol Microbiol 53:1607–1608PubMedGoogle Scholar
  148. Kvaratskhelia M, White MF (2000) Two Holliday junction resolving enzymes in Sulfolobus solfataricus. J Mol Biol 297:923–932PubMedGoogle Scholar
  149. Kyrpides NC et al (1999) Transcription in archaea. Proc Natl Acad Sci USA 96:8545–8550PubMedCentralPubMedGoogle Scholar
  150. Lama L et al (1990) Starch conversion with immobilized thermophilic archaebacterium Sulfolobus solfataricus. Biotechnol Lett 12:431–432Google Scholar
  151. Lamble HJ et al (2003) Metabolic pathway promiscuity in the archaeon Sulfolobus solfataricus revealed by studies on glucose dehydrogenase and 2-Keto-3-deoxygluconate aldolase. J Biol Chem 278:34066–34072PubMedGoogle Scholar
  152. Lamble HJ et al (2004) Gluconate dehydratase from the promiscuous Entner-Doudoroff pathway in Sulfolobus solfataricus. FEBS Lett 576:133–136PubMedGoogle Scholar
  153. Lamble HJ et al (2005) Promiscuity in the part-phosphorylative Entner-Doudoroff pathway of the archaeon Sulfolobus solfataricus. FEBS Lett 579:6865–6869PubMedGoogle Scholar
  154. Lanzendorfer M et al (1994) Structure and function of the DNA-dependent RNA polymerase of Sulfolobus. Syst Appl Microbiol 16:156–164Google Scholar
  155. Lanzotti V et al (1986) 1H and 13C NMR assignment of benzothiophenquinones from the sulfur-oxidizing archaebacterium Sulfolobus solfataricus. Eur J Biochem 160:37–40PubMedGoogle Scholar
  156. Lassak K et al (2012) Molecular analysis of the crenarchaeal flagellum. Mol Microbiol 83:110–124PubMedGoogle Scholar
  157. Leigh JA et al (2011) Model organisms for genetics in the domain archaea: methanogens, halophiles, thermococcales and sulfolobales. FEMS Microbiol Rev 35:577–608PubMedGoogle Scholar
  158. Lemos R et al (2001) Acidianus ambivalens complex II typifies a novel family of succinate dehydrogenases. Biochem Biophys Res Commun 281:141–150PubMedGoogle Scholar
  159. Leng J et al (1995) Isolation and cloning of a protein-serine/threonine phosphatase from an archaeon. J Bacteriol 177:6510–6517PubMedCentralPubMedGoogle Scholar
  160. Lin Z et al (2006) Origins and evolution of the recA/RAD51 gene family: Evidence for ancient gene duplication and endosymbiotic gene transfer. Proc Natl Acad Sci USA 103:10328–10333PubMedCentralPubMedGoogle Scholar
  161. Liu S (2008) Archaeal and bacterial sulfur oxygenase-reductases: genetic diversity and physiological function microbial sulfur. Metabolism 217–224Google Scholar
  162. Liu LJ et al (2011) Metallosphaera cuprina sp. nov., an acidothermophilic, metal-mobilizing archaeon. Int J Syst Evol Microbiol 61:2395–2400PubMedGoogle Scholar
  163. Lower BH, Kennelly PJ (2002) The membrane-associated protein-serine/threonine kinase from Sulfolobus solfataricus is a glycoprotein. J Bacteriol 184:2614–2619PubMedCentralPubMedGoogle Scholar
  164. Lower BH, Kennelly PJ (2003) Open reading frame sso2387 from the archaeon Sulfolobus solfataricus encodes a polypeptide with protein-serine kinase activity. J Bacteriol 185:3436–3445PubMedCentralPubMedGoogle Scholar
  165. Lower BH et al (2000) The archaeon Sulfolobus solfataricus contains a membrane-associated protein kinase activity that preferentially phosphorylates threonine residues in vitro. J Bacteriol 182:3452–3459PubMedCentralPubMedGoogle Scholar
  166. Lower BH et al (2004) A phosphoprotein from the archaeon Sulfolobus solfataricus with protein-serine/threonine kinase activity. J Bacteriol 186:463–472PubMedCentralPubMedGoogle Scholar
  167. Lübben M, Schäfer G (1987) A plasma-membrane associated ATPase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Eur J Biochem 164:533–540PubMedGoogle Scholar
  168. Lübben M et al (1986) Investigations of the bioenergetic system in Sulfolobus acidocaldarius DSM 639. Syst Appl Microbiol 7:425–426Google Scholar
  169. Lübben M et al (1987) The plasma membrane ATPase of the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Eur J Biochem 167:211–219PubMedGoogle Scholar
  170. Lübben M et al (1992) An archaebacterial terminal oxidase combines core structures of two mitochondrial respiratory complexes. EMBO J 11:805–812PubMedCentralPubMedGoogle Scholar
  171. Lundgren M, Bernander R (2007) Genome-wide transcription map of an archaeal cell cycle. Proc Natl Acad Sci USA 104:2939–2944PubMedCentralPubMedGoogle Scholar
  172. Ma X et al (2011) Single-stranded DNA binding activity of XPBI, but not XPBII, from Sulfolobus tokodaii causes double-stranded DNA melting. Extremophiles: life under extreme conditions 15:67–76Google Scholar
  173. Makarova KS et al (2007) Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea. Biol Direct 2:33PubMedCentralPubMedGoogle Scholar
  174. Martins LO et al (1997) Organic solutes in hyperthermophilic archaea. Appl Environ Microbiol 63:896–902PubMedCentralPubMedGoogle Scholar
  175. Martusewitsch E et al (2000) High spontaneous mutation rate in the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by transposable elements. J Bacteriol 182:2574–2581PubMedCentralPubMedGoogle Scholar
  176. Maruta K et al (1996) Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim Biophys Acta 1291:177–181PubMedGoogle Scholar
  177. Minami Y et al (1985) Amino acid sequence of a ferredoxin from the thermoacidophilic archaebacterium, Sulfolobus acidocaldarius. Presence of an N(6)-monomethyllysine and phyletic consideration of archaebacteria. J Biochem 97:745–753PubMedGoogle Scholar
  178. Mizanur RM et al (2004) Unusually broad substrate tolerance of a heat-stable archaeal sugar nucleotidyltransferase for the synthesis of sugar nucleotides. J Am Chem Soc 126:15993–15998PubMedGoogle Scholar
  179. Mukai K et al (1997) Production of trehalose from starch by thermostable enzymes from Sulfolobus acidocaldarius. Starch 49:26–30Google Scholar
  180. Müller FH et al (2004) Coupling of the pathway of sulphur oxidation to dioxygen reduction: characterization of a novel membrane-bound thiosulphate:quinone oxidoreductase. Mol Microbiol 53:1147–1160PubMedGoogle Scholar
  181. Nicolaus B et al (1988) Trehalose in archaebacteria. Syst Appl Microbiol 10:215–217Google Scholar
  182. Nicolaus B et al (1992) Quinone composition in Sulfolobus solfataricus grown under different conditions. Syst Appl Microbiol 15:18–20Google Scholar
  183. Nunn CEM et al (2010) Metabolism of pentose sugars in the hyperthermophilic archaea Sulfolobus solfataricus and Sulfolobus acidocaldarius. J Biol Chem 285:33701–33709PubMedCentralPubMedGoogle Scholar
  184. Orell A et al (2010) Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals. Biotech Adv 28:839–848Google Scholar
  185. Orita I et al (2006) The ribulose monophosphate pathway substitutes for the missing pentose phosphate pathway in the archaeon Thermococcus kodakaraensis. J Bacteriol 188:4698–4704PubMedCentralPubMedGoogle Scholar
  186. Palm P et al (1991) Complete nucleotide sequence of the virus SSV1 of the archaebacterium Sulfolobus shibatae. Virology 185:242–250PubMedGoogle Scholar
  187. Park HS et al (2007) TreX from Sulfolobus solfataricus ATCC 35092 displays isoamylase and 4-α-glucanotransferase activities. Biosci Biotechnol Biochem 71:1348–1352PubMedGoogle Scholar
  188. Park JT et al (2008) Oligomeric and functional properties of a debranching enzyme TreX from the archaeon Sulfolobus solfataricus P2. Biocat Biotrans 26:76–85Google Scholar
  189. Parker JL, White MF (2005) The endonuclease Hje catalyses rapid, multiple turnover resolution of Holliday junctions. J Mol Biol 350:1–6PubMedGoogle Scholar
  190. Peeters E et al (2009) Ss-LrpB, a transcriptional regulator from Sulfolobus solfataricus, regulates a gene cluster with a pyruvate ferredoxin oxidoreductase-encoding operon and permease genes. Mol Microbiol 71:972–988PubMedGoogle Scholar
  191. Peng X et al (2000) Evolution of the family of pRN plasmids and their integrase-mediated insertion into the chromosome of the crenarchaeon Sulfolobus solfataricus. J Mol Biol 303:449–454PubMedGoogle Scholar
  192. Peng X et al (2008) Evidence for the horizontal transfer of an integrase gene from a fusellovirus to a pRN-like plasmid within a single strain of Sulfolobus and the implications for plasmid survival. Microbiology 154:383–391PubMedGoogle Scholar
  193. Peng N et al (2012) A synthetic arabinose-inducible promoter confers high levels of recombinant protein expression in hyperthermophilic archaeon Sulfolobus islandicus. Appl Environ Microbiol 78:5630–5637PubMedCentralPubMedGoogle Scholar
  194. Pereira MM et al (2004) Respiratory chains from aerobic thermophilic prokaryotes. J Bioener Biomem 36:93–105Google Scholar
  195. Perevalova AA, Bidzhieva SKh, Kublanov IV, Hinrichs KU, Liu XL, Mardanov AV, Lebedinsky AV, Bonch-Osmolovskaya EA (2010) Fervidicoccus fontis gen. nov., sp. nov., an anaerobic, thermophilic crenarchaeote from terrestrial hot springs, and proposal of Fervidicoccaceae fam. nov. and Fervidicoccales ord. nov. Int J Syst Evol Microbiol. 60(Pt 9):2082–8Google Scholar
  196. Pina M et al (2011) The archeoviruses. FEMS Microbiol Rev 35:1035–1054PubMedGoogle Scholar
  197. Plumb JJ et al (2007) Acidianus sulfidivorans sp. nov., an extremely acidophilic, thermophilic archaeon isolated from a solfatara on Lihir Island, Papua New Guinea, and emendation of the genus description. Int J Syst Evol Microbiol 57:1418–1423PubMedGoogle Scholar
  198. Prangishvili D et al (1998) Conjugation in archaea: frequent occurrence of conjugative plasmids in Sulfolobus. Plasmid 40:190–202PubMedGoogle Scholar
  199. Prangishvili D et al (2000) Sulfolobicins, specific proteinaceous toxins produced by strains of the extremely thermophilic archaeal genus Sulfolobus. J Bacteriol 182:2985–2988PubMedCentralPubMedGoogle Scholar
  200. Prokofeva MI, Kostrikina NA, Kolganova TV, Tourova TP, Lysenko AM, Lebedinsky AV, Bonch-Osmolovskaya EA (2009) Isolation of the anaerobic thermoacidophilic crenarchaeote Acidilobus saccharovorans sp. nov. and proposal of Acidilobales ord. nov., including Acidilobaceae fam. nov. and Caldisphaeraceae fam. nov. Int J Syst Evol Microbiol. 59(Pt 12):3116–22. doi: 10.1099/ijs.0.010355-0. Epub 2009 Jul 30.Google Scholar
  201. Protze J et al (2011) An extracellular tetrathionate hydrolase from the thermoacidophilic archaeon Acidianus Ambivalens with an activity optimum at pH 1. Front Microbiol 2:12Google Scholar
  202. Prüschenk R et al (1987) Surface structure variants in different species of Sulfolobus. FEMS Microbiol Lett 43:327–330Google Scholar
  203. Purschke WG, Schäfer G (2001) Independent replication of the plasmids pRN1 and pRN2 in the archaeon Sulfolobus islandicus. FEMS Microbiol Lett 200:97–102PubMedGoogle Scholar
  204. Purschke WG et al (1997) The terminal quinol oxidase of the hyperthermophilic archaeon Acidianus ambivalens exhibits a novel subunit structure and gene organization. J Bacteriol 179:1344–1353PubMedCentralPubMedGoogle Scholar
  205. Qu Q et al (2004) TreT, a novel trehalose glycosyltransferring synthase of the hyperthermophilic archaeon Thermococcus litoralis. J Biol Chem 279:47890–47897PubMedGoogle Scholar
  206. Quaiser A et al (2008) The Mre11 protein interacts with both Rad50 and the HerA bipolar helicase and is recruited to DNA following gamma irradiation in the archaeon Sulfolobus acidocaldarius. BMC Mol Biol 9:25PubMedCentralPubMedGoogle Scholar
  207. Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91PubMedGoogle Scholar
  208. Rawlings DE, Johnson DB (2007) The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology 153:315–324PubMedGoogle Scholar
  209. Redder P et al (2009) Four newly isolated fuselloviruses from extreme geothermal environments reveal unusual morphologies and a possible interviral recombination mechanism. Environ Microbiol 11:2849–2862PubMedGoogle Scholar
  210. Reeve JN (2003) Archaeal chromatin and transcription. Mol Microbiol 48:587–598PubMedGoogle Scholar
  211. Reimann J et al (2012) Regulation of archaella expression by the FHA and von Willebrand domain-containing proteins ArnA and ArnB in Sulfolobus acidocaldarius. Mol Microbiol 86:24–36PubMedGoogle Scholar
  212. Reiter WD, Zillig W (1990) Mutational analysis of an archaebacterial promoter: essential role of a TATA box for transcription efficiency and start-site selection in vitro. Proc Natl Acad Sci USA 87:9509–9513PubMedCentralPubMedGoogle Scholar
  213. Ren B et al (2009) Structure and function of a novel endonuclease acting on branched DNA substrates. EMBO J 28:2479–2489PubMedCentralPubMedGoogle Scholar
  214. Reno ML et al (2009) Biogeography of the Sulfolobus islandicus pan-genome. Proc Natl Acad Sci USA 106:8605–8610PubMedCentralPubMedGoogle Scholar
  215. Rice G et al (2004) The structure of a thermophilic archaeal virus shows a double-stranded DNA viral capsid type that spans all domains of life. Proc Natl Acad Sci USA 101:7716–7720PubMedCentralPubMedGoogle Scholar
  216. Richards JD et al (2008) The archaeal XPB protein is a ssDNA-dependent ATPase with a novel partner. J Mol Biol 376:634–644PubMedGoogle Scholar
  217. Roberts JA, White MF (2005) An archaeal endonuclease displays key properties of both eukaryal XPF-ERCC1 and Mus81. J Biol Chem 280:5924–5928PubMedGoogle Scholar
  218. Roberts JA et al (2003) An archaeal XPF repair endonuclease dependent on a heterotrimeric PCNA. Mol Microbiol 48:361–371PubMedGoogle Scholar
  219. Rocha R et al (2006) Natural domain design: enhanced thermal stability of a zinc-lacking ferredoxin isoform shows that a hydrophobic core efficiently replaces the structural metal site. Biochemistry 45:10376–10384PubMedGoogle Scholar
  220. Rouillon C, White MF (2010) The XBP-Bax1 helicase-nuclease complex unwinds and cleaves DNA: implications for eukaryal and archaeal nucleotide excision repair. J Biol Chem 285:11013–11022PubMedCentralPubMedGoogle Scholar
  221. Rouillon C, White MF (2011) The evolution and mechanisms of nucleotide excision repair proteins. Res Microbiol 162:19–26PubMedGoogle Scholar
  222. Rudolph J, Oesterhelt D (1995) Chemotaxis and phototaxis require a CheA histidine kinase in the archaeon Halobacterium salinarum. EMBO J 14:667–673PubMedCentralPubMedGoogle Scholar
  223. Sandman K, Reeve JN (2000) Structure and functional relationships of archaeal and eukaryal histones and nucleosomes. Arch Microbiol 173:165–169PubMedGoogle Scholar
  224. Sato T, Atomi H (2011) Novel metabolic pathways in Archaea. Curr Opin Microbiol 14:307–314PubMedGoogle Scholar
  225. Say RF, Fuchs G (2010) Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme. Nature 464:1077–1081PubMedGoogle Scholar
  226. Schäfer G, Meyering-Vos M (1992) The plasma membrane ATPase of archaebacteria. Ann N Y Acad Sci 671:293–309PubMedGoogle Scholar
  227. Schäfer G et al (1990) Electron transport and energy conservation in the archaebacterium Sulfolobus acidocaldarius. FEMS Microbiol Rev 75:335–348Google Scholar
  228. Schäfer G et al (1999) Bioenergetics of the archaea. Microbiol Mol Biol Rev 63:570–620PubMedCentralPubMedGoogle Scholar
  229. Schleper C et al (1995) A multicopy plasmid of the extremely thermophilic archaeon Sulfolobus effects its transfer to recipients by mating. J Bacteriol 177:4417–4426PubMedCentralPubMedGoogle Scholar
  230. Segerer A et al (1986) Acidianus infernus gen nov, sp nov, and Acidianus brierleyi comb nov facultatively aerobic, extremely Acidophilic Thermophilic Sulfur-metabolizing Archaebacteria Inter.1. J Syst Bacteriol 36:559–564Google Scholar
  231. Segerer AH et al. (1991) Stygiolobus azoricus gen. nov., sp. nov. Represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the Order Sulfolobales. Int J System Bacteriol 41:495–501Google Scholar
  232. Selig M et al (1997) Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga toga. Arch Microbiol 167:217–232PubMedGoogle Scholar
  233. Seo JS et al (2007) Molecular cloning and characterization of trehalose biosynthesis genes from hyperthermophilic archaebacterium Metallosphaera hakonesis. J Microbiol Biotechnol 17:123–129PubMedGoogle Scholar
  234. She Q et al (1998) Genetic profile of pNOB8 from Sulfolobus: the first conjugative plasmid from an archaeon. Extremophiles 2:417–425PubMedGoogle Scholar
  235. She Q et al (2001) The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci USA 98:7835–7840PubMedCentralPubMedGoogle Scholar
  236. Shen W et al (2006) Properties of recombinant Sulfolobus shibatae Maltooligosyltrehalose synthase expressed in HMS174. Nat Sci 4:52–57Google Scholar
  237. Siebers B, Schönheit P (2005) Unusual pathways and enzymes of central carbohydrate metabolism in Archaea. Curr Opin Microbiol 695–705Google Scholar
  238. Siebers B et al (2011) The complete genome sequence of Thermoproteus tenax: a physiologically versatile member of the Crenarchaeota. PLoS One 6:e24222PubMedCentralPubMedGoogle Scholar
  239. Simon G et al (2009) Effect of O2 concentrations on Sulfolobus solfataricus P2. FEMS Microbiol Lett 299:255–260PubMedGoogle Scholar
  240. Sisignano M et al (2010) A 2-oxoacid dehydrogenase complex of Haloferax volcanii is essential for growth on isoleucine but not on other branched-chain amino acids. Microbiology 156:521–529PubMedGoogle Scholar
  241. Smith LD et al (1987) Citrate synthase from the thermophilic archaebacteria Thermoplasma acidophilum and Sulfolobus acidocaldarius. FEBS Lett 225:277–281Google Scholar
  242. Smith CM et al (1997) The protein kinase resource. Trends Biochem Sci 22:444–446PubMedGoogle Scholar
  243. Soderberg T, Alver RC (2004) Transaldolase of Methanocaldococcus jannaschii. Archaea 1:255–262PubMedCentralPubMedGoogle Scholar
  244. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690Google Scholar
  245. Stedman KM et al (2000) pING family of conjugative plasmids from the extremely Thermophilic Archaeon Sulfolobus islandicus: insights into recombination and conjugation in Crenarchaeota. J Bacteriol 182:7014–7020PubMedCentralPubMedGoogle Scholar
  246. Stedman KM et al (2003) Relationships between fuselloviruses infecting the extremely thermophilic archaeon Sulfolobus: SSV1 and SSV2. Res Microbiol 15:295–302Google Scholar
  247. Stetter KO (1989) Order III: Sulfolobales ord. nov. In: Staley J et al (eds) Bergey’s manual of systematic bacteriology. Williams & Wilkins, BaltimoreGoogle Scholar
  248. Suzuki T et al (2002) Sulfolobus tokodaii sp. nov. (f. Sulfolobus sp. strain 7), a new member of the genus Sulfolobus isolated from Beppu Hot Springs, Japan. Extremophiles 6:39–44PubMedGoogle Scholar
  249. Szabo Z, Sani M et al (2007a) Flagellar motility and structure in the hyperthermoacidophilic archaeon Sulfolobus solfataricus. J Bacteriol 189:4305–4309PubMedCentralPubMedGoogle Scholar
  250. Szabo Z, Stahl AO et al (2007b) Identification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases. J Bacteriol 189:772–778PubMedCentralPubMedGoogle Scholar
  251. Takayanagi S et al (1996) Sulfolobus hakonensis sp nov, a novel species of acidothermophilic archaeon. Int J Syst Bacteriol 46:377–382PubMedGoogle Scholar
  252. Teixeira M et al (1995) A Seven-iron Ferredoxin from the Thermoacidophilic Archaeon Desulfurolobus ambivalens. Eur J Biochem 227:322–327PubMedGoogle Scholar
  253. Thomm M, Grünberg S, Naji S (2009) Mutational studies of archaeal RNA polymerase and analysis of hybrid RNA polymerases. Biochem Soc Trans 37:18–22PubMedGoogle Scholar
  254. Thurl S et al (1986) Quinones from archaebacteria. II. Different types of quinones from sulphur-dependent archaebacteria. Biol Chem Hoppe Seyler 367:191–197PubMedGoogle Scholar
  255. Uhrigshardt H et al (2001) Purification and characterization of the first archaeal aconitase from the thermoacidophilic Sulfolobus acidocaldarius. Eur J Biochem 268:1760–1771PubMedGoogle Scholar
  256. Ulas T et al (2012) Genome-scale reconstruction and analysis of the metabolic network in the Hyperthermophilic Archaeon Sulfolobus solfataricus. PLoS One 7Google Scholar
  257. Urich T et al (2005) The sulfur oxygenase reductase from Acidianus ambivalens is an icosatetramer as shown by crystallization and patterson analysis. Biochim Biophys Acta 1747:267–270PubMedGoogle Scholar
  258. Urich T et al (2006) X-ray Structure of a self-compartmentalizing sulfur cycle metalloenzyme. Science 311:996–1000PubMedGoogle Scholar
  259. Van Der Oost J, Siebers B (2007) The glycolytic pathways of archaea: evolution by tinkering. In: Garrett RA, Klenk HP (eds) Archaea: evolution, physiology and molecular biology. Blackwell, Singapore, pp 247–259Google Scholar
  260. Veith A et al (2009) Acidianus, Sulfolobus and Metallosphaera surface layers: structure, composition and gene expression. Mol Microbiol 73:58–72PubMedGoogle Scholar
  261. Veith A et al (2011) Substrate pathways and mechanisms of inhibition in the sulfur oxygenase reductase of Acidianus ambivalens. Front Microbiol 2:12Google Scholar
  262. Verhees CH et al (2004) Erratum: the unique features of glycolytic pathways in archaea. Biochem J 377:819–822Google Scholar
  263. Vestergaard G, Aramayo R et al (2008a) Structure of the acidianus filamentous virus 3 and comparative genomics of related archaeal lipothrixviruses. J Virol 82:371–381PubMedCentralPubMedGoogle Scholar
  264. Vestergaard G, Shah S et al (2008b) Stygiolobus rod-shaped virus and the interplay of crenarchaeal rudiviruses with the CRISPR antiviral system. J Bacteriol 190:6837–6845PubMedCentralPubMedGoogle Scholar
  265. Villafane A, Ruhl I, Sannino D, Maezato Y, Blum P, Bini E (2011) CopR of Sulfolobus solfataricus represents a novel class of archaeal-specific copper-responsive activators of transcription. Microbiology 157:2808–2817PubMedGoogle Scholar
  266. Wagner M et al (2012) Versatile genetic tool box for the crenarchaeote sulfolobus acidocaldarius. Front Microbiol 3:214PubMedCentralPubMedGoogle Scholar
  267. Wakagi T, Oshima T (1985) Membrane-bound ATPase of a thermoacidophilic archaebacterium, Sulfolobus acidocaldarius. Biochim Biophys Acta Biomem 817:33–41Google Scholar
  268. Wakagi T, Oshima T (1987) Energy metabolism of a thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Origins Life Evol B 17:391–399Google Scholar
  269. Wang B et al (2010) Archaeal eukaryote-like serine/threonine protein kinase interacts with and phosphorylates a forkhead-associated-domain-containing protein. J Bacteriol 192:1956–1964PubMedCentralPubMedGoogle Scholar
  270. Whitaker RJ et al (2003) Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science 301:976–978PubMedGoogle Scholar
  271. White MF (2011) Homologous recombination in the archaea: the means justify the ends. Biochem Soc Trans 39:15–19PubMedGoogle Scholar
  272. Wiedenheft B et al (2004) Comparative genomic analysis of hyperthermophilic archaeal fuselloviridae. Viruses 78:1954–1961Google Scholar
  273. Wojtas MN et al (2012) Structural and functional analyses of the interaction of archaeal RNA polymerase with DNA. Nucleic Acids Res 40:9941–9952PubMedCentralPubMedGoogle Scholar
  274. Wolterink-Van Loo S et al (2007) Biochemical and structural exploration of the catalytic capacity of Sulfolobus KDG aldolases. Biochem J 403:421–430PubMedCentralPubMedGoogle Scholar
  275. Woo EJ et al (2008) Structural insight into the bifunctional mechanism of the glycogen-debranching enzyme TreX from the archaeon Sulfolobus solfataricus. J Biol Chem 283:28641–28648PubMedCentralPubMedGoogle Scholar
  276. Worthington P et al (2003) Targeted disruption of the alpha-amylase gene in the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol 185:482–488PubMedCentralPubMedGoogle Scholar
  277. Wurtzel O et al (2010) A single-base resolution map of an archaeal transcriptome. Genome Res 20:133–141PubMedCentralPubMedGoogle Scholar
  278. Yarza P, Ludwig W, Euzeby J, Amann R, Schleifer KH, Glöckner FO, and Rossello-Mora R (2010) Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299. doi:10.1016/j.syapm.2010.08.001Google Scholar
  279. Yamamoto T et al (2001) Trehalose-producing operon treYZ from Arthrobacter ramosus S34. Biosci Biotech Biochem 65:1419–1423Google Scholar
  280. Yoshida N et al (2006) Acidianus manzaensis sp. nov., a novel thermoacidophilic archaeon growing autotrophically by the oxidation of H2 with the reduction of Fe3+. Curr Microbiol 53:406–411PubMedGoogle Scholar
  281. Zaparty M, Siebers B (2011) Physiology, metabolism and enzymology of thermoacidophiles. In: Horikoshi K et al (eds) Extremophiles handbook. Springer, Tokyo, pp 602–639Google Scholar
  282. Zaparty M et al (2010) “Hot standards” for the thermoacidophilic archaeon Sulfolobus solfataricus. Extremophiles 14:119–142PubMedCentralPubMedGoogle Scholar
  283. Zhang C, Whitaker RJ (2012) A broadly applicable gene knockout system for the thermoacidophilic archaeon Sulfolobus islandicus based on simvastatin selection. Microbiology 158:1513–1522PubMedGoogle Scholar
  284. Zhang Q et al (1996) 2-Oxoacid:ferredoxin oxidoreductase from the thermoacidophilic Archaeon, Sulfolobus sp. Strain 7. J Biochem 120:587–599PubMedGoogle Scholar
  285. Zhang S et al (2008) Archaeal DNA helicase HerA interacts with Mre11 homologue and unwinds blunt-ended double-stranded DNA and recombination intermediates. DNA Repair 7:380–391PubMedGoogle Scholar
  286. Zhang Z et al (2012) Archaeal chromatin proteins. Sci China Life Sci 55:377–385PubMedGoogle Scholar
  287. Zillig W, Janeković D (1979) DNA-dependent RNA polymerase from the archaebacterium Sulfolobus acidocaldarius. Eur J Biochem 96:597–604PubMedGoogle Scholar
  288. Zillig W et al (1980) The Sulfolobus-Caldariella group - taxonomy on the basis of the structure of DNA-dependent RNA polymerases. Arch Microbiol 125:259–269Google Scholar
  289. Zillig W et al (1986) Desulfurolobus ambivalens, gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur. Syst Appl Microbiol 8:197–203Google Scholar
  290. Zillig W, Langer D, Klenk HP, Lanzendörfer M, Hüdepohl U, Hain JPP (1992) RNA polymerases and transcription in archaebacteria. Biochem Soc Symp 58:79–88PubMedGoogle Scholar
  291. Zillig W et al (1994) Screening for Sulfolobales, their plasmids and their viruses in Icelandic solfataras. Syst Appl Microbiol 16:609–628Google Scholar
  292. Zillig W et al (1996) Viruses, plasmids and other genetic elements of thermophilic and hyperthermophilic Archaea. FEMS Microbiol Rev 18:225–236PubMedGoogle Scholar
  293. Zillig W et al (1998) Genetic elements in the extremely thermophilic archaeon Sulfolobus. Extremophiles 2:131–140PubMedGoogle Scholar
  294. Zimmermann P et al (1999) Two modes of sulfite oxidation in the extremely thermophilic and acidophilic archaeon Acidianus ambivalens. Arch Microbiol 172:76–82PubMedGoogle Scholar
  295. Zolghadr B et al (2007) Identification of a system required for the functional surface localization of sugar binding proteins with class III signal peptides in Sulfolobus solfataricus. Mol Microbiol 64:795–806PubMedGoogle Scholar
  296. Zolghadr B et al (2011) The bindosome is a structural component of the Sulfolobus solfataricus cell envelope. Extremophiles 15:235–244PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Max Planck Institute for Terrestrial MicrobiologyMarburgGermany
  2. 2.FB Chemie - Biofilm Centre Molekulare Enzymtechnologie und BiochemieUniversität Duisburg-EssenEssenGermany

Personalised recommendations