Skip to main content

The Genus Bacteroides

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

Bacteroides species has a large genome that allows it to adapt to particular environments or conditions. The genome of Bacteroides fragilis, the type species of the genera, is also quite “plastic” and contains a large number of moving elements such as plasmids, transposons, and conjugative transposons that are important in dissemination of resistance and virulence elements. Thus, BF may serve as a gut reservoir for resistance determinants that they can pass on to much more virulent bacteria that move through the gut only periodically. Bacteroides fragilis is normally a human gut commensal or even a symbiont. BF can become a virulent pathogen if it escapes its gastrointestinal niche as a consequence of disruption of the integrity of the intestinal barrier due to surgery, trauma, or disease. BF only accounts for 2 % of the total gut Bacteroides, but it is the agent of >70 % of Bacteroides infections. BF can be found in almost every type of infection including bacteremia, serious gynecological infections, peritonitis, soft tissue infections, and brain abscess. Some BF contain a gene coding for an enterotoxin (ETBF) that can cause severe diarrheal disease. BF makes a polysaccharide capsule (PSA) that is important in the immune development of the newborn and may be important in preventing colitis; ironically, PSA is required for B. fragilis to initiate abscess formation in experimental models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abratt VR, Zappe H, Woods DR (1993) A reporter gene vector to investigate the regulation of glutamine synthetase in Bacteroides fragilis Bf1. J Gen Microbiol 139(Pt 1):59–65

    CAS  PubMed  Google Scholar 

  • Al Masalma M, Lonjon M, Richet H, Dufour H, Roche PH, Drancourt M, Raoult D, Fournier PE (2012) Metagenomic analysis of brain abscesses identifies specific bacterial associations. Clin Infect Dis 54:202–210

    CAS  PubMed  Google Scholar 

  • Alauzet C, Mory F, Teyssier C, Hallage H, Carlier JP, Grollier G, Lozniewski A (2010) Metronidazole resistance in Prevotella spp. and description of a new nim gene in Prevotella baroniae. Antimicrob Agents Chemother 54:60–64

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson KL, Salyers AA (1989) Biochemical evidence that starch breakdown by Bacteroides thetaiotaomicron involves outer membrane starch-binding sites and periplasmic starch-degrading enzymes. J Bacteriol 171:3192–3198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aziz RK, Bartels D, Best AA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75

    PubMed Central  PubMed  Google Scholar 

  • Bartha N, Soki J, Urban E, Nagy E (2011) Investigation of the prevalence of tetQ, tetX and tetX1 genes in Bacteroides strains with elevated tigecycline minimum inhibitory concentrations. Int J Antimicrob Agents 38:522–525

    CAS  PubMed  Google Scholar 

  • Baughn AD, Malamy MH (2004) The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 427:441–444

    CAS  PubMed  Google Scholar 

  • Begley M, Gahan CG, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–651

    CAS  PubMed  Google Scholar 

  • Begley M, Hill C, Gahan CG (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72:1729–1738

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bi D, Xu Z, Harrison E, Tai C, Wei Y, He X, Jia S, Deng Z, Rajakumar K, Ou HY (2012) ICEberg: a web-based resource for integrative and conjugative elements found in Bacteria. Nucleic Acids Res 40–6:D621–D626

    Google Scholar 

  • Bizzini A, Greub G (2010) Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clin Microbiol Infect 16:1614–1619

    CAS  PubMed  Google Scholar 

  • Bron PA, Marco M, Hoffer SM, Van ME, de Vos WM, Kleerebezem M (2004) Genetic characterization of the bile salt response in Lactobacillus plantarum and analysis of responsive promoters in vitro and in situ in the gastrointestinal tract. J Bacteriol 186:7829–7835

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brook I (2008) Microbiology and management of abdominal infections. Dig Dis Sci 53:2585–2591

    PubMed  Google Scholar 

  • Cash HL, Whitham CV, Behrendt CL, Hooper LV (2006) Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313:1126–1130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caspi R, Foerster H, Fulcher C et al (2008) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 36–31

    Google Scholar 

  • Cerdeno-Tarraga AM, Patrick S, Crossman LC et al (2005a) Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science 307:1463–1465

    CAS  PubMed  Google Scholar 

  • Cerdeno-Tarraga AM, Patrick S, Crossman LC, Blakely G, Abratt V, Lennard N, Poxton I, Duerden B, Harris B, Quail MA, Barron A, Clark L, Corton C, Doggett J, Holden MT, Larke N, Line A, Lord A, Norbertczak H, Ormond D, Price C, Rabbinowitsch E, Woodward J, Barrell B, Parkhill J (2005b) Extensive DNA inversions in the B. fragilis genome control variable gene expression: Supplemental online material. Science 307:1463–1465

    Google Scholar 

  • Chatzidaki-Livanis M, Coyne MJ, Roche-Hakansson H, Comstock LE (2008) Expression of a uniquely regulated extracellular polysaccharide confers a large-capsule phenotype to Bacteroides fragilis. J Bacteriol 190:1020–1026

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chaudhry R, Mathur P, Dhawan B, Kumar L (2001) Emergence of metronidazole-resistant Bacteroides fragilis. India Emerg Infect Dis 7:485–486 (Letter)

    CAS  Google Scholar 

  • Cho KH, Salyers AA (2001) Biochemical analysis of interactions between outer membrane proteins that contribute to starch utilization by Bacteroides thetaiotaomicron. J Bacteriol 183:7224–7230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Comstock L (2009) Importance of glycans to the host-bacteroides mutualism in the mammalian intestine. Cell Host Microbe 5:522–526

    CAS  PubMed  Google Scholar 

  • Comstock LE, Coyne MJ (2003) Bacteroides thetaiotaomicron: a dynamic, niche-adapted human symbiont. Bioessays 25:926–929

    CAS  PubMed  Google Scholar 

  • Comstock LE, Kasper DL (2006) Bacterial glycans: key mediators of diverse host immune responses. Cell 126:847–850

    CAS  PubMed  Google Scholar 

  • Corzo G, Gilliland SE (1999) Measurement of bile salt hydrolase activity from Lactobacillus acidophilus based on disappearance of conjugated bile salts. J Dairy Sci 82:466–471

    CAS  PubMed  Google Scholar 

  • Coyne M, Comstock L (2008) Niche-specific features of the intestinal bacteroidales. J Bacteriol 190:736–742

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coyne MJ, Tzianabos AO, Mallory BC, Carey VJ, Kasper DL, Comstock LE (2001) Polysaccharide biosynthesis locus required for virulence of Bacteroides fragilis. Infect Immun 69:4342–4350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coyne MJ, Reinap B, Lee MM, Comstock LE (2005) Human symbionts use a host-like pathway for surface fucosylation. Science 307:1778–1781

    CAS  PubMed  Google Scholar 

  • De Boever P, Verstraete W (1999) Bile salt deconjugation by Lactobacillus plantarum 80 and its implication for bacterial toxicity. J Appl Microbiol 87:345–352

    PubMed  Google Scholar 

  • Diniz CG, Farias LM, Carvalho MA, Rocha ER, Smith CJ (2004) Differential gene expression in a Bacteroides fragilis metronidazole-resistant mutant. J Antimicrob Chemother 54:100–108

    CAS  PubMed  Google Scholar 

  • Fenner L, Roux V, Mallet MN, Raoult D (2005) Bacteroides massiliensis sp. nov., isolated from blood culture of a newborn. Int J Syst Evol Microbiol 55:1335–1337

    CAS  PubMed  Google Scholar 

  • Finegold S, Sussman M (2001) Anaerobic infections: a clinical overview. In: Molecular medical microbiology. In: Sussman M (ed) Academic Press, San Diego

    Google Scholar 

  • Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104:13780–13785

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fredericks D, Relman D (1996) Sequence-based identification of microbial pathogens: a reconsideration of Koch’s postulates. Clin Microbiol Rev 9:18–33

    CAS  PubMed Central  PubMed  Google Scholar 

  • Freitas M, Tavan E, Cayuela C, Diop L, Sapin C, Trugnan G (2003) Host-pathogens cross-talk. Indigenous bacteria and probiotics also play the game. Biol Cell 95:503–506

    PubMed  Google Scholar 

  • Gal M, Brazier JS (2004) Metronidazole resistance in Bacteroides spp. carrying nim genes and the selection of slow-growing metronidazole-resistant mutants. J Antimicrob Chemother 54:109–116

    CAS  PubMed  Google Scholar 

  • Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gillespie WA, Guy J (1956) Bacteroides in intra-abdominal sepsis. Lancet 1:1039–1041

    Google Scholar 

  • Guinane CM, Tadrous A, Fouhy F, Ryan CA, Dempsey EM, Murphy B, Andrews E, Cotter PD, Stanton C, Ross RP (2013) Microbial composition of human appendices from patients following appendectomy. MBio 4:e00366

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamady Z, Farrar M, Whitehead T, Holland K, Lodge J, Carding S (2008) Identification and use of the putative Bacteroides ovatus xylanase promoter for the inducible production of recombinant human proteins. Microbiology 154:3165–3174

    CAS  PubMed  Google Scholar 

  • Hamady Z, Scott N, Farrar M, Wadhwa M, Dilger P, Whitehead T, Thorpe R, Holland K, Lodge J, Carding S (2011) Treatment of colitis with a commensal gut bacterium engineered to secrete human TGF-ß1 under the control of dietary xylan 1. Inflamm Bowel Dis 17:1925–1935

    PubMed  Google Scholar 

  • Hartmeyer GN, Soki J, Nagy E, Justesen US (2012) Multidrug-resistant Bacteroides fragilis group on the rise in Europe? J Med Microbiol 61:1784–1788

    CAS  PubMed  Google Scholar 

  • Hecht DW (2004) Prevalence of antibiotic resistance in anaerobic bacteria: worrisome developments. Clin Infect Dis 39:92–97

    PubMed  Google Scholar 

  • Hehemann JH, Correc GL, Barbeyron T, Helbert W, Czjzek M, Michel G (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464:908–912

    CAS  PubMed  Google Scholar 

  • Hooper LV, Xu J, Falk PG, Midtvedt T, Gordon JI (1999) A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci U S A 96:9833–9838

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881–884

    CAS  PubMed  Google Scholar 

  • Houston S, Blakely G, McDowell A, Martin L, Patrick S (2010) Binding and degradation of fibrinogen by Bacteroides fragilis and characterization of a 54 kDa fibrinogen-binding protein. Microbiology 156:2516–2526

    CAS  PubMed  Google Scholar 

  • Huang J, Lee S, Mazmanian S (2011) The human commensal Bacteroides fragilis binds intestinal mucin. Anaerobe 17:137–141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Husain F, Veeranagouda Y, Hsi J, Meggersee R, Abratt V, Wexler HM (2013) Two Multidrug resistant clinical isolates of Bacteroides fragilis carry a novel metronidazole resistance nim gene (nimJ). Antimicrob Agents Chemother 57: 3767–3774

    Google Scholar 

  • Janda J, Abbott S (2007) 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 45:2761–2764

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jeters R, Wang GR, Moon K, Shoemaker N, Salyers A (2009) Tetracycline-associated transcriptional regulation of transfer genes of the Bacteroides conjugative transposon CTnDOT. J Bacteriol 191:6374–6382

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jousimies-Somer H, Summanen P (2002) Recent taxonomic changes and terminology update of clinically significant anaerobic gram-negative bacteria (excluding spirochetes). Clin Infect Dis 35:17–21

    Google Scholar 

  • Jousimies-Somer H, Summanen P, Citron DM, Baron EJ, Wexler HM, Finegold SM (2002) Wadsworth-KTL anaerobic bacteriology manual. Star Publishing, Belmont

    Google Scholar 

  • Jousimies-Somer H, Summanen P, Finegold SM (2003) Bacteroides, Porphyromonas, Prevotella, Fusobacterium and other Anaerobic Gram-negative rods and cocci. In: Murray PR, Baron EJ, Jorgensen JHPMA, Yolken RH (eds) Manual of clinical microbiology. ASM Press, Washington, DC, pp 690–711

    Google Scholar 

  • Kanehisa M (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40–14

    Google Scholar 

  • Karlsson F, Ussery D, Nielsen J, Nookaew I (2011) A closer look at Bacteroides: phylogenetic relationship and genomic implications of a life in the human gut. Microb Ecol 61:473–485

    PubMed  Google Scholar 

  • Katsandri A, Papaparaskevas J, Pantazatou A, Petrikkos GL, Thomopoulos G, Houhoula DP, Avlamis A (2006) Two cases of infections due to multidrug-resistant Bacteroides fragilis group strains. J Clin Microbiol 44:3465–3467

    PubMed Central  PubMed  Google Scholar 

  • Kazmierczak MJ, Wiedmann M, Boor KJ (2005) Alternative sigma factors and their roles in bacterial virulence. Microbiol Mol Biol Rev 69:527–543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keeton C, Park J, Wang GR, Hopp C, Shoemaker N, Gardner J, Salyers A (2013) The excision proteins of CTnDOT positively regulate the transfer operon. Plasmid 69:172–179

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kitahara M, Sakamoto M, Ike M, Sakata S, Benno Y (2005) Bacteroides plebeius sp. nov. and Bacteroides coprocola sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 55:2143–2147

    CAS  PubMed  Google Scholar 

  • Krieg NR, Ludwig W, Euzéby J (2011) Phylum XIV. Bacteroidetes phyl. nov. In: Krieg NR, Staley JR, Brown DR, Hedlund BP, Paster BJ, Ward NL, Lugtenberg B, Whitman WB (eds) The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. Springer, New York

    Google Scholar 

  • Kurokawa K, Itoh T, Kuwahara T et al (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuwahara T, Yamashita A, Hirakawa H, Nakayama H, Toh H, Okada N, Kuhara S, Hattori M, Hayashi T, Ohnishi Y (2004) Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation. Proc Natl Acad Sci U S A 101:14919–14924

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lassmann B, Gustafson DR, Wood CM, Rosenblatt JE (2007) Reemergence of anaerobic bacteremia. Clin Infect Dis 44:895–900

    PubMed  Google Scholar 

  • Ledger W (2003) Post-partum endomyometritis diagnosis and treatment: a review. J Obstet Gynaecol Res 29:364–373

    PubMed  Google Scholar 

  • Lee S, Donaldson G, Mikulski Z, Boyajian S, Ley K, Mazmanian S (2013) Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 501:426–429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li XZ, Nikaido H (2009) Efflux-mediated drug resistance in bacteria: an update. Drugs 69:1555–1623

    Google Scholar 

  • Li M, Zhou H, Hua W, Wang B, Wang S, Zhao G, Li L, Zhao L, Pang X (2009) Molecular diversity of Bacteroides spp. in human fecal microbiota as determined by group-specific 16S rRNA gene clone library analysis. Syst Appl Microbiol 32:193–200

    PubMed  Google Scholar 

  • Li MX, Zhu HY, Yang DH, Ma XQ, Wang CZ, Cai SQ, Liu GR, Ku BS, Liu SL (2012) Production of secoisolariciresinol from defatted flaxseed by bacterial biotransformation. J Appl Microbiol 113:1352–1361

    CAS  PubMed  Google Scholar 

  • Liu C, Song Y, McTeague M, Vu AW, Wexler H, Finegold SM (2003) Rapid identification of the species of the Bacteroides fragilis group by multiplex PCR assays using group- and species-specific primers. FEMS Microbiol Lett 222:9–16

    CAS  PubMed  Google Scholar 

  • Lofmark S, Fang H, Hedberg M, Edlund C (2005) Inducible metronidazole resistance and nim genes in clinical Bacteroides fragilis group isolates. Antimicrob Agents Chemother 49:1253–1256

    PubMed Central  PubMed  Google Scholar 

  • Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lozupone C, Hamady M, Cantarel B, Coutinho P, Henrissat B, Gordon J, Knight R (2008) The convergence of carbohydrate active gene repertoires in human gut microbes. Proc Natl Acad Sci U S A 105:15076–15081

    CAS  PubMed Central  PubMed  Google Scholar 

  • Markowitz V, Chen IM, Palaniappan K et al (2012) IMG: the Integrated Microbial Genomes database and comparative analysis system. Nucleic Acids Res 40–22

    Google Scholar 

  • Martens EC, Chiang HC, Gordon LK (2008) Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4:447–457

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martens E, Koropatkin N, Smith T, Gordon J (2009) Complex glycan catabolism by the human gut microbiota: the Bacteroidetes Sus-like paradigm. J Biol Chem 284:24673–24677

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez-Suarez JV, Baquero F, Reig M, Perez-Diaz JC (1985) Transferable plasmid-linked chloramphenicol acetyltransferase conferring high-level resistance in Bacteroides uniformis. Antimicrob Agents Chemother 28:113–117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meehan B, Baughn A, Gallegos R, Malamy M (2012) Inactivation of a single gene enables microaerobic growth of the obligate anaerobe Bacteroides fragilis. Proc Natl Acad Sci U S A 109:12153–12158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miki T, Kuwahara T, Nakayama H, Okada N, Kataoka K, Arimochi H, Ohnishi Y (2005) Simultaneous detection of Bacteroides fragilis group species by leuB-directed PCR. J Med Invest 52:101–108

    PubMed  Google Scholar 

  • Miragliotta G, Del Gaudio T, Tajani E, Mosca A (2006) Bacteroides thetaiotaomicron in posthysterectomy infection. Anaerobe 12:276–278

    CAS  PubMed  Google Scholar 

  • Miyamae S, Nikaido H, Tanaka Y, Yoshimura F (1998) Active efflux of norfloxacin by Bacteroides fragilis. Antimicrob Agents Chemother 42:2119–2121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyamae S, Ueda O, Yoshimura F, Hwang J, Tanaka Y, Nikaido H (2001) A MATE family multidrug efflux transporter pumps out fluoroquinolones in Bacteroides thetaiotaomicron. Antimicrob Agents Chemother 45:3341–3346

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moon K, Shoemaker NB, Gardner JF, Salyers AA (2005) Regulation of excision genes of the Bacteroides conjugative transposon CTnDOT. J Bacteriol 187:5732–5741

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagy E, Soki J, Urban E, Szoke I, Fodor E, Edwards R (2001) Occurrence of metronidazole and imipenem resistance among Bacteroides fragilis group clinical isolates in Hungary. Acta Biol Hung 52:271–280

    CAS  PubMed  Google Scholar 

  • Nagy E, Becker S, Soki J, Urban E, Kostrzewa M (2011a) Differentiation of division I (cfiA-negative) and division II (cfiA-positive) Bacteroides fragilis strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Med Microbiol 60:1584

    CAS  PubMed  Google Scholar 

  • Nagy E, Urban E, Nord CE (2011b) Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe: 20 years of experience. Clin Microbiol Infect 17:371–379

    CAS  PubMed  Google Scholar 

  • Nagy E, Becker S, Kostrzewa M, Barta NM, Urbán E (2012) The value of MALDI-TOF MS for the identification of clinically relevant anaerobic bacteria in routine laboratories. J Med Microbiol 61:1393–1400

    CAS  PubMed  Google Scholar 

  • Nakai K, Kanehisa M (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14:897–911

    CAS  PubMed  Google Scholar 

  • Nakano V, Padilla G, do Valle MM, Vila-Campos MJ (2004) Plasmid-related beta-lactamase production in Bacteroides fragilis strains. Res Microbiol 155:843–846

    CAS  PubMed  Google Scholar 

  • Nakayama-Imaohji H, Hirakawa H, Ichimura M, Wakimoto S, Kuhara S, Hayashi T, Kuwahara T (2009) Identification of the site-specific DNA invertase responsible for the phase variation of SusC/SusD family outer membrane proteins in Bacteroides fragilis. J Bacteriol 191:6003–6011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakayama-Imaohji H, Ichimura M, Iwasa T, Okada N, Ohnishi Y, Kuwahara T (2012) Characterization of a gene cluster for sialoglycoconjugate utilization in Bacteroides fragilis. The Journal of Medical Investigation: JMI 59:79–94

    PubMed  Google Scholar 

  • Ndamukong IC, Gee J, Smith CJ (2013) The extracytoplasmic function sigma factor EcfO protects Bacteroides fragilis against oxidative stress. J Bacteriol 195:145–155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nguyen M, Vedantam G (2011) Mobile genetic elements in the genus Bacteroides, and their mechanism(s) of dissemination. Mob Genet Elements 1:187–196

    PubMed Central  PubMed  Google Scholar 

  • Nikaido H, Pagés JM(2012) Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS microbiology reviews 36:340–363

    Google Scholar 

  • Overbeek R, Begley T, Butler RM et al (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33:5691–5702

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park J, Salyers A (2011) Characterization of the Bacteroides CTnDOT regulatory protein RteC. J Bacteriol 193:91–97

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parker AC, Smith CJ (1993) Genetic and biochemical analysis of a novel Ambler class A beta-lactamase responsible for cefoxitin resistance in Bacteroides species. Antimicrob Agents Chemother 37:1028–1036

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patrick S, Blakely GW (2012) Crossing the eukaryote-prokaryote divide: a ubiquitin homolog in the human commensal bacterium Bacteroides fragilis. Mob Genet Elements 2:149

    PubMed Central  PubMed  Google Scholar 

  • Patrick S, Parkhill J, McCoy L, Lennard N, Larkin M, Collins M, Sczaniecka M, Blakely G (2003) Multiple inverted DNA repeats of Bacteroides fragilis that control polysaccharide antigenic variation are similar to the hin region inverted repeats of Salmonella typhimurium. Microbiology 149:915–924

    CAS  PubMed  Google Scholar 

  • Patrick S, Blakely GW, Houston S et al (2010) Twenty-eight divergent polysaccharide loci specifying within- and amongst-strain capsule diversity in three strains of Bacteroides fragilis. Microbiology 156:3255–3269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patrick S, Jobling K, O’Connor D, Thacker Z, Dryden D, Blakely G (2011) A unique homologue of the eukaryotic protein-modifier ubiquitin present in the bacterium Bacteroides fragilis, a predominant resident of the human gastrointestinal tract. Microbiology 157:3071–3078

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pedersen R, Marmolin E, Justesen U (2013) Differentiation of Bacteroides dorei from Bacteroides vulgatus and Bacteroides ovatus from Bacteroides xylanisolvens: Back to basics. Anaerobe 24:1–3

    Google Scholar 

  • Podglajen I, Breuil J, Collatz E (1994) Insertion of a novel DNA sequence, 1S1186, upstream of the silent carbapenemase gene cfiA, promotes expression of carbapenem resistance in clinical isolates of Bacteroides fragilis. Mol Microbiol 12:105–114

    CAS  PubMed  Google Scholar 

  • Polk BF, Kasper DL (1977) Bacteroides fragilis subspecies in clinical isolates. Ann Intern Med 86:569–571

    CAS  PubMed  Google Scholar 

  • Prasad K, Mishra A, Gupta D, Husain N, Husain M, Gupta R (2006) Analysis of microbial etiology and mortality in patients with brain abscess. J Infect 53:221–227

    PubMed  Google Scholar 

  • Pumbwe L, Chang A, Smith RL, Wexler HM (2006a) Clinical significance of overexpression of multiple RND-family efflux pumps in Bacteroides fragilis isolates. J Antimicrob Chemother 58:543–548

    CAS  PubMed  Google Scholar 

  • Pumbwe L, Glass D, Wexler HM (2006b) Efflux pump overexpression in multiple antibiotic resistant mutants of Bacteroides fragilis. Antimicrob Agents Chemother 50:3150–3153

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pumbwe L, Skilbeck CA, Wexler HM (2006c) The Bacteroides fragilis cell envelope: quarterback, linebacker, coach-or all three? Anaerobe 12:211–220

    CAS  PubMed  Google Scholar 

  • Pumbwe L, Ueda O, Yoshimura F, Chang A, Smith R, Wexler HM (2006d) Bacteroides fragilis BmeABC efflux systems additively confer intrinsic antimicrobial resistance. J Antimicrob Chemother 58:37–46

    CAS  PubMed  Google Scholar 

  • Pumbwe L, Chang A, Smith RL, Wexler HM (2007a) BmeRABC5 is a multidrug efflux system that can confer metronidazole resistance in Bacteroides fragilis. Microb Drug Resist 13:96–101

    CAS  PubMed  Google Scholar 

  • Pumbwe L, Skilbeck C, Oren A, Wexler HM (2007b) Bile salts enhance bacterial co-aggregation, bacterial-intestinal epithelial cell adhesion, biofilm formation and antimicrobial resistance of Bacteroides fragilis. Microb Pathog 43:78

    CAS  PubMed  Google Scholar 

  • Pumbwe L, Skilbeck C, Wexler HM (2007c) Induction of multiple antibiotic resistance in Bacteroides fragilis by benzene and benzene-derived active compounds of commonly used analgesics, antiseptics and cleaning agents. J Antimicrob Chemother 60:1288–1297

    CAS  PubMed  Google Scholar 

  • Pumbwe L, Wareham DW, Aduse-Opoku J, Brazier JS, Wexler HM (2007d) Genetic analysis of mechanisms of multidrug resistance in a clinical isolate of Bacteroides fragilis. Clin Microbiol Infect 13:183–189

    CAS  PubMed  Google Scholar 

  • Pumbwe L, Curzon M, Wexler HM (2008) Rapid multiplex PCR assay for simultaneous detection of major antibiotic resistance determinants in clinical isolates of Bacteroides fragilis. J Rapid Method Aut Mic 16:381–393

    CAS  Google Scholar 

  • Rasmussen BA, Kovacs E (1993) Cloning and identification of a two-component signal-transducing regulatory system from Bacteroides fragilis. Mol Microbiol 7:765–776

    CAS  PubMed  Google Scholar 

  • Rasmussen JL, Odelson DA, Macrina FL (1987) Complete nucleotide sequence of insertion element IS4351 from Bacteroides fragilis. J Bacteriol 169:3573–3580

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reid G (2004) When microbe meets human. Clin Infect Dis 39:827–830

    PubMed  Google Scholar 

  • Reid J, Patrick S (1984) Phagocytic and serum killing of capsulate and non-capsulate Bacteroides fragilis. J Med Microbiol 17:247–257

    CAS  PubMed  Google Scholar 

  • Ren Q, Paulsen I (2007) Large-scale comparative genomic analyses of cytoplasmic membrane transport systems in prokaryotes. J Mol Microbiol Biotechnol 12:165–179

    CAS  PubMed  Google Scholar 

  • Riesenfeld S, Pollard K (2013) Beyond classification: gene-family phylogenies from shotgun metagenomic reads enable accurate community analysis. BMC Genomics 14:419

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robert R, Deraignac A, Le MG, Ragot S, Grollier G (2008) Prognostic factors and impact of antibiotherapy in 117 cases of anaerobic bacteraemia. Eur J Clin Microbiol Infect Dis 27:671–678

    CAS  PubMed  Google Scholar 

  • Roberts MC (2003) Acquired tetracycline and/or macrolide-lincosamides-streptogramin resistance in anaerobes. Anaerobe 9:63–69

    CAS  PubMed  Google Scholar 

  • Rocha ER, Tzianabos AO, Smith CJ (2007) Thioredoxin reductase is essential for thiol/disulfide redox control and oxidative stress survival of the anaerobe Bacteroides fragilis. J Bacteriol 189:8015–8023

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roh KH, Kim S, Kim CK, Yum JH, Kim MS, Yong D, Jeong SH, Lee K, Kim JM, Chong Y (2010) New cfiA variant and novel insertion sequence elements in carbapenem-resistant Bacteroides fragilis isolates from Korea. Diagn Microbiol Infect Dis 66:343–348

    CAS  PubMed  Google Scholar 

  • Rotimi VO, Khoursheed M, Brazier JS, Jamal WY, Khodakhast FB (1999) Bacteroides species highly resistant to metronidazole: an emerging clinical problem? Clin Microbiol Infect 5:166–169

    PubMed  Google Scholar 

  • Round J, Mazmanian S (2010) Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A 107:12204–12209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Round J, Lee S, Li J, Tran G, Jabri B, Chatila T, Mazmanian S (2011) The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science (New York) 332:974–977

    CAS  PubMed Central  Google Scholar 

  • Sakamoto M, Benno Y (2006) Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen.nov, cob.nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int J Syst Bacteriol 56:1599–1605

    Google Scholar 

  • Sakamoto M, Ohkuma M (2011) Identification and classification of the genus Bacteroides by multilocus sequence analysis. Microbiology 157:3388–3397

    Google Scholar 

  • Salyers AA (1984) Bacteroides of the human lower intestinal tract. Annu Rev Microbiol 38:293–313

    CAS  PubMed  Google Scholar 

  • Salyers AA, Valentine P, Hwa V (1993) In: Sebald M (ed) Genetics and molecular biology of anaerobic bacteria. Springer, New York, pp 505–516

    Google Scholar 

  • Salyers AA, Shoemaker NB, Li LY (1995a) In the driver’s seat: the Bacteroides conjugative transposons and the elements they mobilize. J Bacteriol 177:5727–5731

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salyers AA, Shoemaker NB, Stevens AM, Li LY (1995b) Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol Rev 59:579–590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scales B, Huffnagle G (2013) The microbiome in wound repair and tissue fibrosis. J Pathol 229:323–331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schaumann R, Petzold S, Fille M, Rodloff AC (2005) Inducible metronidazole resistance in nim-positive and nim-negative Bacteroides fragilis group strains after several passages metronidazole containing Columbia agar plates. Infection 33:368–372

    CAS  PubMed  Google Scholar 

  • Sears CL (2009) Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clin Microbiol Rev 22:349–369, Table

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sears C, Pardoll D (2011) Perspective: alpha-bugs, their microbial partners, and the link to colon cancer. J Infect Dis 203:306–311

    PubMed Central  PubMed  Google Scholar 

  • Shah HN, Collins MD (1989) Proposal to restrict the genus Bacteroides (Castellani and Chalmers) to Bacteroides fragilis and closely related species. Int J Syst Bacteriol 39:85–87

    Google Scholar 

  • Shah HN, Jacinto RC, Ahmod N, Langham S, Gharbia SE, Kallow W, Welker M (2008) The Genus Bacteroides eLS. In: Encyclopedia of life sciences. Wiley, London

    Google Scholar 

  • Shah H, Olsen I, Bernard K, Finegold S, Gharbia S, Gupta R (2009) Approaches to the study of the systematics of anaerobic, gram-negative, non-sporeforming rods: current status and perspectives. Anaerobe 15:179–194

    CAS  PubMed  Google Scholar 

  • Sherwood JE, Fraser S, Citron DM, Wexler HM, Blakely GW, Jobling K, Patrick S (2011) Multi-drug resistant Bacteroides fragilis recovered from blood and severe leg wounds caused by an improvised explosive device (IED) in Afghanistan. Anaerobe 17:152–155

    CAS  PubMed  Google Scholar 

  • Shoemaker NB, Barber RD, Salyers AA (1989) Cloning and characterization of a Bacteroides conjugal tetracycline-erythromycin resistance element by using a shuttle cosmid vector. J Bacteriol 171:1294–1302

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shoemaker NB, Vlamakis H, Hayes K, Salyers AA (2001) Evidence for extensive resistance gene transfer among Bacteroides spp. and among Bacteroides and other genera in the human colon. Appl Environ Microbiol 67:561–568

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith CJ, Tribble GD, Bayley DP (1998) Genetic elements of Bacteroides species: a moving story. Plasmid 40:12–29

    CAS  PubMed  Google Scholar 

  • Smith CJ, Rocha ER, Paster BJ (2006) The medically important Bacteroides spp. in health and disease. Proc Natl Acad Sci U S A 7:381–427

    Google Scholar 

  • Snydman DR, Jacobus NV, McDermott LA et al (2002) In vitro activities of newer quinolones against bacteroides group organisms. Antimicrob Agents Chemother 46:3276–3279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sóki J (2013) Extended role for insertion sequence elements in the antibiotic resistance of Bacteroides. World J Clin Infect Dis 3:1–12

    Google Scholar 

  • Soki J, Fodor E, Hecht DW, Edwards R, Rotimi VO, Kerekes I, Urban E, Nagy E (2004) Molecular characterization of imipenem-resistant, cfiA-positive Bacteroides fragilis isolates from the USA, Hungary and Kuwait. J Med Microbiol 53:413–419

    CAS  PubMed  Google Scholar 

  • Soki J, Gal M, Brazier JS, Rotimi VO, Urban E, Nagy E, Duerden BI (2006) Molecular investigation of genetic elements contributing to metronidazole resistance in Bacteroides strains. J Antimicrob Chemother 57:212–220

    CAS  PubMed  Google Scholar 

  • Soki J, Eitel Z, Urban E, Nagy E (2013) Molecular analysis of the carbapenem and metronidazole resistance mechanisms of Bacteroides strains reported in a Europe-wide antibiotic resistance survey. Int J Antimicrob Agents 41:122–125

    CAS  PubMed  Google Scholar 

  • Song YL, Liu CX, McTeague M, Finegold SM (2004) “Bacteroides nordii” sp. nov. and “Bacteroides salyersae” sp. nov. isolated from clinical specimens of human intestinal origin. J Clin Microbiol 42:5565–5570

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song Y, Liu C, Lee J, Bolanos M, Vaisanen ML, Finegold SM (2005) “Bacteroides goldsteinii sp. nov.” isolated from clinical specimens of human intestinal origin. J Clin Microbiol 43:4522–4527

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sonnenburg ED, Sonnenburg JL, Manchester JK, Hansen EE, Chiang HC, Gordon JI (2006) A hybrid two-component system protein of a prominent human gut symbiont couples glycan sensing in vivo to carbohydrate metabolism. Proc Natl Acad Sci U S A 103:8834–8839

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics (Oxford, England) 22:2688–2690

    CAS  Google Scholar 

  • Steffens L, Nicholson S, Paul L, Nord C, Patrick S, Abratt V (2010) Bacteroides fragilis RecA protein overexpression causes resistance to metronidazole. Res Microbiol 161:346–354

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stellwag EJ, Hylemon PB (1976) Purification and characterization of bile salt hydrolase from Bacteroides fragilis subsp. fragilis. Biochim Biophys Acta 452:165–176

    CAS  PubMed  Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    CAS  PubMed  Google Scholar 

  • Sund CJ, Rocha ER, Tzinabos AO, Wells WG, Gee JM, Reott MA, O’Rourke DP, Smith CJ (2008) The Bacteroides fragilis transcriptome response to oxygen and H2O2: the role of OxyR and its effect on survival and virulence. Mol Microbiol 67:129–142

    CAS  PubMed  Google Scholar 

  • Tally FP, Cuchural GJ Jr, Malamy MH (1984) Mechanisms of resistance and resistance transfer in anaerobic bacteria: factors influencing antimicrobial therapy. Rev Infect Dis 6(Suppl 1):260–269

    Google Scholar 

  • Tao L, Yang H, Zhang T, Zhang Y, Wang Q, Wang S, Cai Q, Liu L (2013) Cloning, expression, and characterization of the ß-glucosidase hydrolyzing secoisolariciresinol diglucoside to secoisolariciresinol from Bacteroides uniformis ZL1. Appl Microbiol Biotechnol 98:2519

    PubMed  Google Scholar 

  • Thomas F, Hehemann JH, Rebuffet E, Czjzek M, Michel G (2011) Environmental and gut Bacteroidetes: the food connection. Front Microbiol 2:93

    PubMed Central  PubMed  Google Scholar 

  • Trinh S, Reysset G (1996) Detection by PCR of the nim genes encoding 5-nitroimidazole resistance in Bacteroides spp. J Clin Microbiol 34:2078–2084

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trinh S, Haggoud A, Reysset G, Sebald M (1995) Plasmids pIP419 and pIP421 from Bacteroides: 5-nitroimidazole resistance genes and their upstream insertion sequence elements. Microbiology 141:927–935

    CAS  PubMed  Google Scholar 

  • Troy E, Carey V, Kasper D, Comstock L (2010) Orientations of the Bacteroides fragilis capsular polysaccharide biosynthesis locus promoters during symbiosis and infection. J Bacteriol 192:5832–5836

    CAS  PubMed Central  PubMed  Google Scholar 

  • Turnbaugh P, Ley R, Hamady M, Fraser-Liggett C, Knight R, Gordon J (2007) The human microbiome project. Nature 449:804–810

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tzianabos AO, Kasper DL, Onderdonk AB (1995) Structure and function of Bacteroides fragilis capsular polysaccharides: relationship to induction and prevention of abscesses. Clin Infect Dis 20(Suppl 2):S132–S140

    CAS  PubMed  Google Scholar 

  • Ueda O, Wexler HM, Hirai K, Shibata Y, Yoshimura F, Fujimura S (2005) Sixteen homologs of the mex-type multidrug resistance efflux pump in Bacteroides fragilis. Antimicrob Agents Chemother 49:2807–2815

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ulsemer P, Toutounian K, Schmidt J, Karsten U, Goletz S (2012) Preliminary safety evaluation of a new Bacteroides xylanisolvens isolate. Appl Environ Microbiol 78:528–535

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wareham DW, Wilks M, Ahmed D, Brazier JS, Millar M (2005) Anaerobic sepsis due to multidrug-resistant Bacteroides fragilis: microbiological cure and clinical response with linezolid therapy. Clin Infect Dis 40:e67–e68

    CAS  PubMed  Google Scholar 

  • Waters J, Wang GR, Salyers A (2013) Tetracycline related transcriptional regulation of the CTnDOT mobilization region. J Bacteriol 195:5431

    CAS  PubMed Central  PubMed  Google Scholar 

  • Welch RA, Jones KR, Macrina FL (1979) Transferable lincosamide-macrolide resistance in Bacteroides. Plasmid 2:261–268

    CAS  PubMed  Google Scholar 

  • Wexler HM (2007) Bacteroides–The good, the bad, and the nitty-gritty. Clin Microbiol Rev 20:593–621

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whittle G, Shoemaker N, Salyers A (2002) The role of Bacteroides conjugative transposons in the dissemination of antibiotic resistance genes. J Bacteriol 184:3839–3847

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wozniak R, Waldor M (2010) Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 8:552–563

    CAS  PubMed  Google Scholar 

  • Wybo I, De BA, Soetens O, Echahidi F, Vandoorslaer K, Van CM, Pierard D (2011) Differentiation of cfiA-negative and cfiA-positive Bacteroides fragilis isolates by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 49:1961–1964

    PubMed Central  PubMed  Google Scholar 

  • Xu J, Gordon JI (2003) Inaugural article: honor thy symbionts. Proc Natl Acad Sci U S A 100:10452–10459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, Hooper LV, Gordon JI (2003) A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299:2074–2076

    CAS  PubMed  Google Scholar 

  • Xu J, Chiang HC, Bjursell MK, Gordon JI (2004) Message from a human gut symbiont: sensitivity is a prerequisite for sharing. Trends Microbiol 12:21–28

    PubMed  Google Scholar 

  • Xu J, Mahowald M, Ley R et al (2007) Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol 5:e156

    PubMed Central  PubMed  Google Scholar 

  • Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer KH, Glöckner F, Rosselló-Móra R (2010) Update of the All-Species Living Tree Project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

HW (author) is supported by the Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development, Biomedical Laboratory Research and Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannah M. Wexler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Wexler, H.M. (2014). The Genus Bacteroides . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38954-2_129

Download citation

Publish with us

Policies and ethics