Skip to main content

The Family Acidithiobacillaceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

The Acidithiobacillaceae are one of the two families of the order Acidithiobacillales, containing a single genus, Acidithiobacillus, with five currently known species. All are obligately chemolithoautotrophic acidophiles, growing in the range pH 0.5–5.5; three are mesophiles, one is moderately psychrophilic, and one is a moderate thermophile. They oxidize elemental sulfur and its compounds to generate energy for carbon dioxide fixation and cell biosynthesis. Two species can also oxidize ferrous iron and sulfide minerals such as pyrite (FeS2) for energy generation. They have relatively small genomes (ca. 3 Mb), which encode all the enzyme-proteins required for total biosynthesis from carbon dioxide and energy generation from the inorganic oxidations. The genomes exhibit high levels of gene acquisition by horizontal gene transfer. The family is currently assigned to the Gammaproteobacteria, but it is proposed to be a group separate from both the Beta- and Gammaproteobacteria, which justifies its recognition as a distinct Class of the Proteobacteria. Their mineral-degrading and sulfur-oxidation activities are commercially exploited worldwide to assist in the economic recovery of metals (e.g., copper, uranium, nickel, gold) from their low-grade ores and from mining wastes, by the process of bioleaching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amouric A, Brochier-Armenet C, Johnson DB, Bonnefoy V, Hallberg KB (2011) Phylogenetic and genetic variation among Fe(II)-oxidizing acidithiobacilli supports the view that these comprise multiple species with different ferrous iron oxidation pathways. Microbiology 157:111–122

    Article  PubMed  CAS  Google Scholar 

  • Bounds HC, Colmer AR (1972) Comparison of kinetics of thiosulphate oxidation by three iron-sulphur oxidizers. Can J Microbiol 18:735–740

    Article  PubMed  CAS  Google Scholar 

  • Brierley CL (1982) Microbial mining. Sci Am 247:42–50

    Article  Google Scholar 

  • Brierley CL (2009) Biohydrometallurgy: what is its future? Adv Mater Res 71–73:3–10

    Article  Google Scholar 

  • Brierley JA, Lockwood SJ (1977) The occurrence of thermophilic iron-oxidizing bacteria in a copper leaching system. FEMS Microbiol Lett 2:163–165

    Article  CAS  Google Scholar 

  • Brierley CL, Kelly DP, Seal KJ, Best DJ (1985) Materials and biotechnology. In: Higgins IJ, Best DJ, Jones J (eds) Biotechnology principles and applications. Blackwell, Oxford, pp 163–212

    Google Scholar 

  • Bryant RD, McGroarty KM, Costerton JW, Laishley EJ (1983) Isolation and characterization of a new acidophilic Thiobacillus species (T. albertis). Can J Microbiol 29:1159–1170

    Article  Google Scholar 

  • Cárdenas JP, Nuñez H, Ossandon F, Shmaryahu A, Demergasso C, Quatrini R, Holmes DS (2012) The ecophysiology of bioleaching: a genomics perspective. Hydrometallurgy (submitted)

    Google Scholar 

  • Colmer AR, Hinkle ME (1947) The role of microorganisms in acid mine drainage. Science 106:253–256

    Article  PubMed  CAS  Google Scholar 

  • Colmer AR, Temple KL, Hinkle ME (1950) An iron-oxidizing bacterium from the acid drainage of some bituminous coal mines. J Bacteriol 59:317–328

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dispirito AA, Silver M, Voss L, Tuovinen OH (1982) Flagella and pili of iron-oxidizing thiobacilli isolated from a uranium mine in northern Ontario, Canada. Appl Environ Microbiol 43:1196–1200

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dorrington RA, Rawlings DE (1989) Identification and sequence of the basic replication region of a broad-host-range plasmid isolated from Thiobacillus ferrooxidans. J Bacteriol 171:2735–2739

    PubMed  CAS  PubMed Central  Google Scholar 

  • Emerson D, Rentz JA, Lilburn TG, Davis RE, Aldrich H, Chan C, Moyer CL (2007) A novel lineage of Proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities. PLoS One 2(8):e667. doi:10.1371/journal.pone.0000667

    Article  PubMed  PubMed Central  Google Scholar 

  • Fischer E (2011) Toxic mines: benefits of bioleaching bacteria. Mining technology.com http://www.mining-technology.com/features/feature122499

  • Gardner MN, Deane SM, Rawlings DE (2001) Isolation of a new broad-host-range IncQ-like plasmid, pTC-F14, from the acidophilic bacterium Acidithiobacillus caldus and analysis of the plasmid replicon. J Bacteriol 183:3303–3309

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Garrity GM, Bell JA, Lilburn TG (2005a) Order II. Acidithiobacillales ord. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn, The Proteobacteria, part B: the Gammaproteobacteria. Springer, New York, p 60

    Chapter  Google Scholar 

  • Garrity GM, Bell JA, Lilburn TG (2005b) Family I. Acidithiobacillaceae fam. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn, The Proteobacteria, part B: the Gammaproteobacteria. Springer, New York, p 60

    Chapter  Google Scholar 

  • Hallberg KB, Lindström EB (1994) Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiology 140:3451–3456

    Article  PubMed  CAS  Google Scholar 

  • Hallberg KB, González-Toril E, Johnson DB (2010) Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 14:9–19

    Article  PubMed  CAS  Google Scholar 

  • Hallberg KB, Hedrich S, Johnson DB (2011) Acidiferribacter thiooxydans, gen. nov. sp. nov.; an acidophilic, thermo-tolerant, facultatively anaerobic iron- and sulfur-oxidizer of the family Ectothiorhodospiraceae. Extremophiles 15:271–279

    Article  PubMed  CAS  Google Scholar 

  • Hamana K (2000) Polyamine distribution profiles in Thiobacillus, Thiomonas, Acidithiobacillus, Thermithiobacillus and Halothiobacillus. Ann Gunma Health Sci 21:1–5

    Google Scholar 

  • Hamana K, Matsuzaki S (1990) Five types of polyamine distribution patterns in thiobacilli. FEMS Microbiol Lett 70:347–352

    Article  CAS  Google Scholar 

  • Harrison AP (1981) Acidiphilium cryptum gen. nov., nov., heterotrophic bacterium from acidic mineral environments. Int J Syst Bacteriol 31:327–332

    Article  Google Scholar 

  • Harrison AP (1982) Genomic and physiological diversity amongst strains of Thiobacillus ferrooxidans, and genomic comparison with Thiobacillus thiooxidans. Arch Microbiol 131:68–76

    Article  Google Scholar 

  • Harrison AP Jr, Jarvis BW, Johnson JJ (1980) Heterotrophic bacteria from cultures of autotrophic Thiobacillus ferrooxidans: relationships determined by means of deoxyribonucleic acid homology. J Bacteriol 143:448–454

    PubMed  CAS  PubMed Central  Google Scholar 

  • Holmes DS, Cárdenas JP, Valdés J, Quatrini R, Esparza M, Osario H, Duarte F, Lefimil C, Jedlicki E (2009) Comparative genomics begins to unravel the ecophysiology of bioleaching. Adv Mater Res 71–73:143–150

    Article  Google Scholar 

  • Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154:466–473

    Article  PubMed  CAS  Google Scholar 

  • Joshi NR, Agate AD, Paknikar KM (2000) Polyamine patterns in iron- and sulphur-oxidizing bacteria isolated from an Indian copper mine indicate requirement of spermidine for growth under acid conditions. World J Microbiol Biotechnol 16:631–634

    Article  CAS  Google Scholar 

  • Karavaiko GI, Turova TP, Kondrat’eva TF, Lysenko AM, Kolganova TV, Ageeva SN, Muntyan LN, Pivovarova TA (2003) Phylogenetic heterogeneity of the species Acidithiobacillus ferrooxidans. Int J Syst Evol Microbiol 53:113–119

    Article  PubMed  CAS  Google Scholar 

  • Katayama-Fujimura Y, Tsuzaki N, Kuraishi H (1982) Ubiquinone, fatty acid and DNA base composition as a guide to the taxonomy of the genus Thiobacillus. J Gen Microbiol 128:1599–1611

    CAS  Google Scholar 

  • Kelly DP (1976) Extraction of metals from ores by bacterial leaching: present status and future prospects. In: Schlegel HG, Barnea J (eds) Microbial energy conversion. Goltze KG, Göttingen, pp 329–338

    Google Scholar 

  • Kelly DP (1985) Metallgewinnung aus Erzen durch bakterielles Auslagen: gegenwärtiger Stand und zukünftige Aufgaben. In: Küster E (ed) Mikrobiologie und Umweltschutz. Wissenschaftliche Buchgesellschaft, Darmstadt, pp 161–182

    Google Scholar 

  • Kelly DP (2010) Global consequences of the microbial production and consumption of inorganic and organic sulfur compounds. In: Timmis KN (ed) Microbiology of hydrocarbons, oils, lipids. Springer, Heidelberg, pp 3087–3095

    Chapter  Google Scholar 

  • Kelly DP, Harrison AP (1989) Genus Thiobacillus Beijerinck. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of determinative bacteriology. Williams and Wilkins, Baltimore, pp 1842–1858

    Google Scholar 

  • Kelly DP, Tuovinen OH (1972) Recommendation that the names Ferrobacillus ferrooxidans Leathen and Braley and Ferrobacillus sulfooxidans Kinsel be recognized as synonyms of Thiobacillus ferrooxidans Temple and Colmer. Int J Syst Bacteriol 22:170–172

    Article  Google Scholar 

  • Kelly DP, Wood AP (1994) Synthesis and determination of thiosulfate and polythionates. Methods Enzymol 243:475–501

    Article  CAS  Google Scholar 

  • Kelly DP, Wood AP (1998) Microbes of the sulfur cycle. In: Burlage RS, Atlas R, Stahl D, Geesey G, Sayler G (eds) Techniques in microbial ecology. Oxford University Press, New York, pp 31–57

    Google Scholar 

  • Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516

    Article  PubMed  Google Scholar 

  • Kelly DP, Wood AP (2005a) Genus I. Acidithiobacillus Kelly and Wood 2000. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn, The Proteobacteria, part B: the Gammaproteobacteria. Springer, New York, pp 60–62

    Google Scholar 

  • Kelly DP, Wood AP (2005b) Genus I. Thermithiobacillus Kelly and Wood. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2, 2nd edn, The Proteobacteria, part B: the Gammaproteobacteria. Springer, New York, pp 62–63

    Google Scholar 

  • Kelly DP, Norris PR, Brierley CL (1979) Microbiological methods for the recovery of metals. In: Bull AT, Ellwood DC, Ratledge C (eds) Microbial technology: current status, future prospects, vol 29, Society for General Microbiology Symposia. Cambridge University Press, Cambridge, pp 263–308

    Google Scholar 

  • Lane DJ, Harrison AP, Stahl D, Pace B, Giovannoni SJ, Olsen GJ, Pace NR (1992) Evolutionary relationships among sulfur- and iron-oxidizing Eubacteria. J Bacteriol 174:269–278

    PubMed  CAS  PubMed Central  Google Scholar 

  • Leathen WW, Kinsel NA, Braley RA (1956) Ferrobacillus ferrooxidans: a new chemosynthetic autotrophic bacterium. J Bacteriol 72:700–704

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liljeqvist M, Valdés J, Holmes DS, Dopson M (2011a) Draft genome sequence of the psychrotolerant acidophile Acidithiobacillus ferrivorans SS3. J Bacteriol 193:4304–4305

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liljeqvist M, Sundqvist J-E, Saleh A, Dopson M (2011b) Low temperature removal of inorganic sulfur compounds from mining process waters. Biotechnol Bioeng 108:1251–1259

    Article  PubMed  CAS  Google Scholar 

  • Lipman JG, Waksman SA, Joffe JS (1921) The oxidation of sulfur by soil microorganisms. Soil Sci 12:475–489

    Article  Google Scholar 

  • Loftie-Eaton W, Rawlings DE (2012) Diversity, biology and evolution of IncQ-family plasmids. Plasmid 67:15–34

    Article  PubMed  CAS  Google Scholar 

  • Logan TC, Seal T, Brierley JA (2007) Whole-ore heap biooxidation of sulfidic gold-bearing ores. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Berlin/Heidelberg, pp 113–138

    Chapter  Google Scholar 

  • Marsh RM, Norris PR (1983) The isolation of some thermophilic, autotrophic, iron- and sulfur-oxidizing bacteria. FEMS Microbiol Lett 17:311–315

    Article  Google Scholar 

  • McAllister SM, Davis RE, McBeth JM, Tebo BM, Emerson D, Moyer CL (2011) Biodiversity and emerging biogeography of the neutrophilic iron-oxidizing Zetaproteobacteria. Appl Environ Microbiol 77:5445–5457

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Olson GJ, Brierley JA, Brierley CL (2003) Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 63:249–257

    Article  PubMed  CAS  Google Scholar 

  • Orell A, Navarro CA, Arancibia R, Mobarec JC, Jerez CA (2010) Life in blue: copper resistance mechanisms of bacteria and Archaea used in industrial biomining of minerals. Biotechnol Adv 28:839–848

    Article  PubMed  CAS  Google Scholar 

  • Orellana LH, Jerez CA (2011) A genomic island provides Acidithiobacillus ferrooxidans ATCC 53993 additional copper resistance: a possible advantage. Appl Microbiol Biotechnol 92:761–767

    Article  PubMed  CAS  Google Scholar 

  • Osorio H, Martínez V, Nieto PA, Holmes DS, Quatrini R (2008) Microbial iron management mechanisms in extremely acidic environments: comparative genomics evidence for diversity and versatility. BMC Microbiol 8:203. http://www.biomedcentral.com/1471-2180/8/203

  • Parker CD (1945) The corrosion of concrete. I. The isolation of a species of bacterium associated with the corrosion of concrete exposed to atmosphere containing hydrogen sulphide. Aust J Exp Biol Med Sci 23:81–90

    Article  CAS  Google Scholar 

  • Parker CD (1947) Species of sulphur bacteria associated with the corrosion of concrete. Nature 159:439–440

    Article  PubMed  CAS  Google Scholar 

  • Paulino LC, Bergamo RF, de Mello MP, Garcia O, Manfio GP, Ottoboni LMM (2001) Molecular characterization of Acidithiobacillus ferrooxidans and A. thiooxidans strains isolated from mine wastes in Brazil. Antonie Van Leeuwenhoek 80:65–75

    Article  PubMed  CAS  Google Scholar 

  • Powell AR, Parr SW (1919) A study of the forms in which sulfur occurs in coal. University of Illinois. Engineering Experiment Station Bulletin number 111, 62 pp. https://www.ideals.illinois.edu/handle/2142/4401

  • Qin W, Zhen S, Yan Z, Campbell M, Wang J, Liu K, Zhang Y (2009) Heap bioleaching of a low-grade nickel-bearing sulfide ore containing high levels of magnesium as olivine, chlorite and antigorite. Hydrometallurgy 98:58–65

    Article  CAS  Google Scholar 

  • Rawlings DE (2005) The evolution of pTF-FC2 and pTC-F14, two related plasmids of the IncQ-family. Plasmid 53:137–147

    Article  PubMed  CAS  Google Scholar 

  • Rawlings DE, Johnson DB (eds) (2007a) Biomining. Springer, Heidelberg

    Google Scholar 

  • Rawlings DE, Johnson DB (2007b) The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology 153:315–324

    Article  PubMed  CAS  Google Scholar 

  • Rawlings DE, Kusano T (1994) Molecular genetics of Thiobacillus ferrooxidans. Microbiol Mol Biol Rev 58:39–55

    CAS  Google Scholar 

  • Robertson LA, Kuenen JG (2006) The genus Thiobacillus. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 5, 3rd edn. Springer, New York, pp 812–827

    Chapter  Google Scholar 

  • Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248

    Article  PubMed  CAS  Google Scholar 

  • Sand W, Gehrke T, Jozsa P-G, Schippers A (2001) (Bio)chemistry of bacterial leaching – direct vs. indirect bioleaching. Hydrometallurgy 59:159–175

    Article  CAS  Google Scholar 

  • Silvermann MP, Lundgren DG (1959) Studies on chemoautotrophic iron oxidizing bacterium Ferrobacillus ferrooxidans. 1. An improved medium and harvesting procedure for securing high cell yields. J Bacteriol 77:642–647

    Google Scholar 

  • Temple KL, Colmer AR (1951) The autotrophic oxidation of iron by a new bacterium Thiobacillus ferrooxidans. J Bacteriol 62:605–611

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tuovinen OH, Bhatti TM (1999) Microbiological leaching of uranium ores. Miner Metallurg Process 16:51–60

    CAS  Google Scholar 

  • Tuovinen OH, Kelly DP (1972) Biology of Thiobacillus ferrooxidans in relation to the microbiological leaching of sulphide ores. Z Allg Mikrobiol 12:311–346

    Article  PubMed  CAS  Google Scholar 

  • Tuovinen OH, Kelly DP (1973) Studies on the growth of Thiobacillus ferrooxidans. I. Use of membrane filters and ferrous iron agar to determine viable numbers, and comparison with 14CO2-fixation and iron oxidation as measures of growth. Arch Microbiol 88:285–298

    CAS  Google Scholar 

  • Tuovinen OH, Kelly DP (1974) Studies on the growth of Thiobacillus ferrooxidans. V. Factors affecting growth in liquid culture and development of colonies on solid medium containing inorganic sulphur compounds. Arch Microbiol 98:351–364

    Article  PubMed  CAS  Google Scholar 

  • Valdés J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake R, Eisen JA, Holmes DS (2008) Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics 9:597. doi:10.1186/1471-2164-9-597, 24 pp

    Article  PubMed  PubMed Central  Google Scholar 

  • Valdés J, Quatrini R, Hallberg K, Dopson M, Valenzuela PDT, Holmes DS (2009) Draft genome sequence of the extremely acidophilic bacterium Acidithiobacillus caldus ATCC 51756 reveals metabolic versatility in the genus Acidithiobacillus. J Bacteriol 191:5877–5878

    Article  PubMed  PubMed Central  Google Scholar 

  • Valdés J, Cárdenas JP, Quatrini R, Esparza M, Osorio H, Duarte F, Lefimil C, Sepulveda R, Jedlickic E, Holmes DS (2010) Comparative genomics begins to unravel the ecophysiology of bioleaching. Hydrometallurgy 104:471–476

    Article  Google Scholar 

  • Valdés J, Ossandon F, Quatrini R, Dopson M, Holmes DS (2011) Draft genome sequence of the extremely acidophilic bacterium Acidithiobacillus thiooxidans ATCC 19377 provides insights into the evolution of the Acidithiobacillus genus. J Bacteriol 193:7003–7004

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Zyl LJ, Deane SM, Rawlings DE (2003) Analysis of the mobilization region of the broad-host-range IncQ-like plasmid pTC-F14 and its ability to interact with a related plasmid, pTF-FC2. J Bacteriol 185:6104–6111

    Article  PubMed  PubMed Central  Google Scholar 

  • Waksman SA, Joffe JS (1922) Microorganisms concerned in the oxidation of sulfur in the soil. II. Thiobacillus thiooxidans, a new sulfur-oxidizing organism isolated from the soil. J Bacteriol 7:239–256

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wichlacz PL, Unz RF (1981) Acidophilic, heterotrophic bacteria of acidic mine waters. Appl Environ Microbiol 41:1254–1261

    PubMed  CAS  PubMed Central  Google Scholar 

  • Williams KP, Kelly DP (2013) Proposal for a new class within the Proteobacteria, the Acidithiobacillia, with the Acidithiobacillales as the type order. Int J Syst Evol Microbiol 63:2901–2906

    Article  PubMed  CAS  Google Scholar 

  • Williams KP, Gillespie JJ, Sobral BW, Nordberg EK, Snyder EE, Shallom JM, Dickerman AW (2010) Phylogeny of Gammaproteobacteria. J Bacteriol 192:2305–2314

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Woese CR, Stackebrandt E, Weisburg WG, Paster BJ, Madigan MT, Fowler VJ, Hahn CM, Blanz P, Gupta R, Nealson KH, Fox GE (1984a) The phylogeny of purple bacteria: the alpha subdivision. Syst Appl Microbiol 5:315–326

    Article  PubMed  CAS  Google Scholar 

  • Woese CR, Weisburg WG, Paster BJ, Hahn CM, Tanner RS, Krieg NR, Koops H-P, Harms H, Stackebrandt E (1984b) The phylogeny of purple bacteria: the beta subdivision. Syst Appl Microbiol 5:327–336

    Article  CAS  Google Scholar 

  • Woese CR, Weisburg WG, Hahn CM, Paster BJ, Zablen LB, Lewis BJ, Macke TJ, Ludwig W, Stackebrandt E (1985) The phylogeny of purple bacteria: the gamma subdivision. Syst Appl Microbiol 6:25–33

    Article  CAS  Google Scholar 

  • Wood AP, Kelly DP, Norris PR (1987) Autotrophic growth of four Sulfolobus strains on tetrathionate and the effect of organic nutrients. Arch Microbiol 146:382–389

    Article  CAS  Google Scholar 

  • Wood AP, Aurikko JP, Kelly DP (2004) A challenge for 21st century molecular biology and biochemistry: what are the causes of obligate autotrophy and methanotrophy? FEMS Microbiol Rev 28:335–352

    Article  PubMed  CAS  Google Scholar 

  • Xia J-L, Peng A-A, He H, Yang Y, Liu X-D, Qiu G-Z (2007) A new strain Acidithiobacillus albertensis BY-05 for bioleaching of metal sulfides ores. Trans Nonferrous Met Soc China 17:168–175

    Article  CAS  Google Scholar 

  • Xia L-x, Liu J-s, Xiao L, Zeng J, Li B-m, Geng M-m, Qiu G-z (2008) Single and cooperative bioleaching of sphalerite by two kinds of bacteria—Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Trans Nonferrous Met Soc China 18:190–195

    Article  CAS  Google Scholar 

  • Yamanaka T, Asoa I, Togashia S, Tanigawaa M, Shojia K, Watanabe T, Watanabe N, Makic K, Suzuki H (2002) Corrosion by bacteria of concrete in sewerage systems and inhibitory effects of formates on their growth. Water Res 36:2636–2642

    Article  PubMed  CAS  Google Scholar 

  • Yan T-Y (Mobil Oil Corporation) (1983) In-line regeneration of polythionates poisoned ion exchange resins. US patent 4411873 (granted). http://www.google.com/patents/US4411873

  • Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer KH, Glöckner FO, Rossello-Mora R (2010) Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol 33:291–299

    Article  PubMed  CAS  Google Scholar 

  • You XY, Guo X, Zheng HJ, Zhang MJ, Liu LJ, Zhu YQ, Wang SY, Zhao GP, Poetsch A, Jiang CY, Liu SJ (2011) Unraveling the Acidithiobacillus caldus complete genome and its central metabolisms for carbon assimilation. J Genet Genomics 38:243–252

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donovan P. Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kelly, D.P., Wood, A.P. (2014). The Family Acidithiobacillaceae . In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38922-1_250

Download citation

Publish with us

Policies and ethics