Skip to main content

Magnetite

Abstract

Magnetite, Fe3O4, is a naturally occurring, safe iron oxide with an unusual and useful combination of properties compared to the better-known functional fillers for plastics. It is used to make high-density compounds for sound damping, particularly in automobiles, and also to lend heft, that is, the impression of quality. It is able to block x-rays and other types of radiation, making it useful as a nonhazardous replacement for lead-based blocking materials. A very high volumetric specific heat capacity allows it to absorb and release large amounts of heat energy, which is useful for green buildings. It is microwave and induction heatable, suggesting potential in cooking applications. Thermal conductivity is useful for heat dissipation in electrical devices and electricity conductivity allows it to be used as a permanent antistatic additive. Natural magnetite is composed of hard, angular particles that can enhance slip resistance of polymer flooring. Last, but not least, it is strongly attracted to magnets, so it can be used to impart magnetic properties to plastics. Applications of this multifaceted and relatively unknown specialty filler continue to expand.

Keywords

  • Iron oxide
  • Magnetite
  • High density
  • Microwaveable
  • Specialty filler
  • Radiation shielding

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Aldissi M (1993) Filter line cable featuring conductive fiber shielding. US Patent 5,262,592

    Google Scholar 

  • Chan J (2013) Thermal properties of concrete with different Swedish aggregate materials. Masters thesis, report TVBM-5095, University of Lund

    Google Scholar 

  • Chang M-T, Chou L-J, Hsieh C-H, Chueh Y-L, Wang ZL, Murakami Y, Shindo D (2007) Magnetic and electrical characterizations of half-metallic Fe3O4 nanowires. Adv Mater 19:2290–2294

    CAS  CrossRef  Google Scholar 

  • Clauser C, Huenges E (1995) Thermal conductivity of rocks and minerals. In: Ahrens TJ (ed) Rock physics and phase relations, a handbook of physical constants. American Geophysical Union Reference, Washington, DC

    Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses, 2nd edn. Wiley-VCH, Weinheim

    CrossRef  Google Scholar 

  • Creutz E, Downes K (1949) Magnetite concrete for radiation shielding. J Appl Phys 20:1236–1240

    CAS  CrossRef  Google Scholar 

  • Dionne GF (2009) Magnetic oxides. Springer, New York

    CrossRef  Google Scholar 

  • Duifhuis PL, Janssen JMH (2001) Magnetite functional filler: a compounding study in polypropylene and polyamide. Plast Addit Compd 3(11):14–17

    CAS  CrossRef  Google Scholar 

  • Duifhuis P, Weidenfeller B (2002) Mechanical properties at a glance: polypropylene/magnetite compounds. Kunststoffe 92(8):64–70

    CAS  Google Scholar 

  • Halliwell SM (1992) Weathering of polymers. Rapra review reports. Rapra Technology Ltd., United Kingdom

    Google Scholar 

  • Hancock Y, Finlayson TR (1995) Thermal expansion of magnetite (4.2-300 K). In: Poster session 19th annual A&NZ IP condensed matter & materials meeting, Wagga, 7–10 Feb 1995

    Google Scholar 

  • Harrison RJ, Dunin-Borkowski RE, Putnis A (2002) Direct imaging of nanoscale magnetic interactions in minerals. Proc Natl Acad Sci 99(26):16556–16561

    CAS  CrossRef  Google Scholar 

  • Hein CL, Lens J-P, Pai-Paranjape V, Peek C, van de Grampel RD (2013) X-ray and/or metal detectable articles and method of making the same. US Patent 2013131251

    Google Scholar 

  • Huijbregts WMM, Snel A (1972) The protection effectiveness of magnetite layers in relation to boiler corrosion. In: 5th international congress on metallic corrosion, Tokio

    Google Scholar 

  • Ishizaki K, Stir M, Gozzo F, Catala-Civera JM, Vaucher S, Nicula R (2012) Magnetic microwave heating of magnetite-carbon black mixtures. Mater Chem Phys 134(2–3):1007–1012

    CAS  CrossRef  Google Scholar 

  • Jiping C, Rustum R, Dinesh A (2002) Radically different effects on materials by separating microwave electric and magnetic fields. Mater Res Innov 5:170–177

    CrossRef  Google Scholar 

  • Kong I, Ahmad SH, Abdullah MH, Hui D, Yusoff AN, Puryanti D (2010a) Magnetic and microwave absorbing properties of magnetite-thermoplastic natural rubber nanocomposites. J Magn Magn Mater 322:3401–3409

    CAS  CrossRef  Google Scholar 

  • Kong I, Hj Ahmad S, Hj Abdullah S, Hui D, Nazlim Yusoff A, Puryanti D (2010b) Magnetic and microwave absorbing properties of magnetite-thermoplastic natural rubber nanocomposites. J Magn Magn Mater 322:3401–3409

    CAS  CrossRef  Google Scholar 

  • Korolev VV, Ramazanova AG, Blinov AV (2002) Adsorption of surfactants on superfine magnetite. Russ Chem Bull 51(11):2044–2049, International Edition

    CAS  CrossRef  Google Scholar 

  • Mangnus R (2003) Kautschuk, Gummi, Kunstoffe Online 6:322–329

    Google Scholar 

  • McGill SL, Walkiewicz JW, Clark AE (1995) Report of investigations 9518 – microwave heating of chemicals and minerals. US Department of the Interior, Bureau of Mines

    Google Scholar 

  • Milonjić SK, Kopečni MM, Ilić ZE (1983) The point of zero charge and adsorption properties of natural magnetite. J Radioanal Chem 78(1):15–24

    CrossRef  Google Scholar 

  • Müller B, Axelsson MD, Öhlander B (2003) Trace elements in magnetite from Kiruna, northern Sweden, as determined by LA-ICP-MS. GFF 125:1–5

    CrossRef  Google Scholar 

  • Nagata K, Kojima R, Murakami T, Susa M, Fukuyama H (2001) Mechanisms of Pig-iron making from magnetic ore pellets containing coal at low temperature. ISIJ Int 41:1316–1323

    CAS  CrossRef  Google Scholar 

  • Papell SS (1965) Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles. US Patent 3215572A

    Google Scholar 

  • Parkinson GS, Diebold U, Tang J, Malkinski L (2012) Tailoring the interface properties of magnetite for spintronics. In: Malinsk L (ed) Advanced magnetic materials. InTech, Croatia

    Google Scholar 

  • Peng DL, Asai T, Nozawa N, Hihara T, Sumiyama K (2002) Magnetic properties and magnetoresistance in small iron oxide cluster assemblies. Appl Phys Lett 81(24):4598–4599

    CAS  CrossRef  Google Scholar 

  • Pullaiah G, Irving E, Buchan KL, Dunlop DJ (1975) Magnetization changes caused by burial and uplift, earth planet. Sci Lett 28:133–143

    Google Scholar 

  • Robertson EC (1988) Thermal properties of rocks. USGS open-file report 88-441

    Google Scholar 

  • Schwertmann U, Cornell RM (2000) Iron oxides in the laboratory: preparation and characterization, 2nd edn. Wiley-VCH, Weinheim

    CrossRef  Google Scholar 

  • Scott G (1997) Antioxidants in science, technology, medicine and nutrition. Woodhead Publishing, Albion Publishing, Chichester UK

    Google Scholar 

  • Sidhu PS, Gilkes RJ, Posner AM (1981) Oxidation and ejection of nickel and zinc from natural and synthetic magnetites. Soil Sci Soc Am J 45(3):641–644

    CAS  CrossRef  Google Scholar 

  • Sorescu M (1998) Phase transformations induced in magnetite by high energy ball milling. J Mater Sci Lett 17:1059–1061

    CAS  CrossRef  Google Scholar 

  • Takayama AS, Link G, Sano S, Matsubara A, Sato M, Thumm M (2007) Microwave frequency effect for reduction of magnetite. Plasma and Fusion Research: Regular Articles, Volume 3, S1036 (2008)

    Google Scholar 

  • Thapa D, Palkar VR, Kurup MB, Malik SK (2004) Properties of magnetite nanoparticles synthesized through a novel chemical route. Mater Lett 58:2692–2694

    CAS  CrossRef  Google Scholar 

  • Tremaine PR, LeBlanc JC (1980) The solubility of magnetite and the hydrolysis and oxidation of Fe2+ in water to 300°C. J Solut Chem 9(6):415–442

    CAS  CrossRef  Google Scholar 

  • Vialle G (2009) Inductive activation of magnetite filled shape memory polymers. Masters thesis, Georgia Institute of Technology

    Google Scholar 

  • Weidenfeller B, Höfer M, Schilling F (2002) Thermal and electrical properties of magnetite filled polymers. Compos Part A 33:1041–1053

    CrossRef  Google Scholar 

  • Weidenfeller B, Höfer M, Schilling F (2004) Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Compos Part A 35:423–429

    CrossRef  Google Scholar 

  • Weidenfeller B, Höfer M, Schilling F (2005) Cooling behaviour of particle filled polypropylene during injection moulding process. Compos Part A 36:345–351

    CrossRef  Google Scholar 

  • Xanthos M (2010) Functional fillers for plastics, 2nd edn. Wiley-VCH, Weinheim

    CrossRef  Google Scholar 

  • Yixin H, Chunpeng L (1996) Heating rate of minerals and compounds in microwave field. Trans Nonferrous Met Soc China 6(1):35–40

    Google Scholar 

  • Ziemniak SE, Jones ME, Combs KES (1995) Magnetite solubility and phase stability in alkaline media at elevated temperatures. J Solut Chem 24(9):837–877

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher DeArmitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

DeArmitt, C. (2016). Magnetite. In: Palsule, S. (eds) Polymers and Polymeric Composites: A Reference Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37179-0_34-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37179-0_34-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-37179-0

  • eBook Packages: Springer Reference Chemistry & Mat. ScienceReference Module Physical and Materials Science

Chapter History

  1. Latest

    Magnetite
    Published:
    22 April 2016

    DOI: https://doi.org/10.1007/978-3-642-37179-0_34-2

  2. Original

    Magnetite
    Published:
    02 September 2014

    DOI: https://doi.org/10.1007/978-3-642-37179-0_34-1