Skip to main content

Arteriogenesis and Collateral Formation

  • Reference work entry
  • First Online:
PanVascular Medicine

Abstract

Arteriogenesis is a pathophysiological process that results in dramatic remodeling of preexisting collateral blood vessels that link large conductance arterial trees. Collaterals are very attractive targets for therapeutic approaches in cardiovascular diseases because they can quickly redirect blood flow to the neighboring arterial bed around an occlusion. The collateral circulation is unique based on developmental, anatomical, functional, and physiological regulation compared to arterial–venous and lymphatic circulations. This chapter is focused on mechanisms of collateral formation in development and in adulthood. Time-dependent interplays between endothelial, immune, and smooth muscle cells are discussed in arteriogenesis. Dramatic proliferation of endothelial and smooth muscle cells has been documented in the early phases of the collateral formation. Pro-inflammatory subsets of the adaptive (CD4+ and CD8+ T lymphocytes) and innate (monocytes, macrophages, and NK cells) immune cells are beneficial for collateral remodeling, which is opposite to arterial disease (e.g., atherosclerosis). Maturation and “pruning” of the collateral arteries are entirely dependent on smooth muscle cells. Recent mouse studies shed some light on genetic and environmental determinants of the collateral formation. However, the validation of the gene candidates for arteriogenesis and new and better-controlled clinical trials are much needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Arteriogenesis (collaterogenesis):

A pathophysiological process that results in the formation of collateral blood vessels that link arterial trees.

Cell polarization:

A cell feature that helps to display and maintain specialized cytoplasmic and membrane-associated domains in order to perform specific functions.

Cell sprouting:

A process of cell extension toward the source of the angiogenic stimulus.

Collateral “pruning”:

A pathophysiological process that leads to selective removal of “non-used” collaterals from newly formed network.

Collateral rarefaction:

A process of the reduction of collateral artery density.

Hypertrophic remodeling:

A vascular adaptation process that results in an increase in cross-sectional area of blood vessels.

Maturation of collaterals:

A process that leads to full development of the arteries.

Outward remodeling:

A vascular adaptation process that results in an increase in lumen diameter of blood vessels.

References

  • Aitsebaomo J, Srivastava S et al (2011) Recombinant human interleukin-11 treatment enhances collateral vessel growth after femoral artery ligation. Arterioscler Thromb Vasc Biol 31(2):306–312

    Article  CAS  PubMed  Google Scholar 

  • Anversa P, Li P et al (1994) Effects of aging on quantitative structural properties of coronary vasculature and microvasculature in rats. Am J Physiol 267(3 Pt 2):H1062–H1073

    CAS  PubMed  Google Scholar 

  • Beere PA, Glagov S et al (1984) Retarding effect of lowered heart rate on coronary atherosclerosis. Science 226(4671):180–182

    Article  CAS  PubMed  Google Scholar 

  • Beere PA, Glagov S et al (1992) Experimental atherosclerosis at the carotid bifurcation of the cynomolgus monkey. Localization, compensatory enlargement, and the sparing effect of lowered heart rate. Arterioscler Thromb 12(11):1245–1253

    Article  CAS  PubMed  Google Scholar 

  • Bergmann CE, Hoefer IE et al (2006) Arteriogenesis depends on circulating monocytes and macrophage accumulation and is severely depressed in op/op mice. J Leukoc Biol 80(1):59–65

    Article  CAS  PubMed  Google Scholar 

  • Boettger T, Beetz N et al (2009) Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Invest 119(9):2634–2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown DM, Hong SP et al (1995) Platelet-derived growth factor BB induces functional vascular anastomoses in vivo. Proc Natl Acad Sci U S A 92(13):5920–5924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brozici M, van der Zwan A et al (2003) Anatomy and functionality of leptomeningeal anastomoses: a review. Stroke 34(11):2750–2762

    Article  PubMed  Google Scholar 

  • Buschmann IR, Hoefer IE et al (2001) GM-CSF: a strong arteriogenic factor acting by amplification of monocyte function. Atherosclerosis 159(2):343–356

    Article  CAS  PubMed  Google Scholar 

  • Buschmann I, Pries A et al (2010) Pulsatile shear and Gja5 modulate arterial identity and remodeling events during flow-driven arteriogenesis. Development 137(13):2187–2196

    Article  CAS  PubMed  Google Scholar 

  • Cai WJ, Koltai S et al (2001) Connexin37, not Cx40 and Cx43, is induced in vascular smooth muscle cells during coronary arteriogenesis. J Mol Cell Cardiol 33(5):957–967

    Article  CAS  PubMed  Google Scholar 

  • Cai WJ, Kocsis E et al (2004a) Presence of Cx37 and lack of desmin in smooth muscle cells are early markers for arteriogenesis. Mol Cell Biochem 262(1–2):17–23

    Article  CAS  PubMed  Google Scholar 

  • Cai WJ, Kocsis E et al (2004b) Remodeling of the vascular tunica media is essential for development of collateral vessels in the canine heart. Mol Cell Biochem 264(1–2):201–210

    Article  CAS  PubMed  Google Scholar 

  • Cai WJ, Li MB et al (2009) Activation of the integrins alpha 5beta 1 and alpha v beta 3 and focal adhesion kinase (FAK) during arteriogenesis. Mol Cell Biochem 322(1–2):161–169

    Article  CAS  PubMed  Google Scholar 

  • Cao R, Brakenhielm E et al (2003) Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 9(5):604–613

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6(4):389–395

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, Ferreira V et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, Collen D et al (2002) Molecular and cellular angiogenesis. In: Lanzer P, Topol EJ (eds) Panvascular medicine. Springer, Berlin, pp 273–287

    Google Scholar 

  • Chalothorn D, Faber JE (2010a) Formation and maturation of the native cerebral collateral circulation. J Mol Cell Cardiol 49(2):251–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalothorn D, Faber JE (2010b) Strain-dependent variation in collateral circulatory function in mouse hindlimb. Physiol Genomics 42(3):469–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalothorn D, Clayton JA et al (2007) Collateral density, remodeling, and VEGF-A expression differ widely between mouse strains. Physiol Genomics 30(2):179–191

    Article  CAS  PubMed  Google Scholar 

  • Chalothorn D, Zhang H et al (2009) Chloride intracellular channel-4 is a determinant of native collateral formation in skeletal muscle and brain. Circ Res 105(1):89–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang AC, Patenaude A et al (2013) Notch-dependent regulation of the ischemic vasodilatory response – brief report. Arterioscler Thromb Vasc Biol 33(3):510–512

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Rubin J et al (2010) Role of PECAM-1 in arteriogenesis and specification of preexisting collaterals. Circ Res 107(11):1355–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Liu X et al (2009) MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res 105(2):158–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho WC, Chow AS et al (2011) MiR-145 inhibits cell proliferation of human lung adenocarcinoma by targeting EGFR and NUDT1. RNA Biol 8(1):125–131

    Article  CAS  PubMed  Google Scholar 

  • Chu PL, Keum S et al (2013) A novel genetic locus modulates infarct volume independently of the extent of collateral circulation. Physiol Genomics 45(17):751–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clayton JA, Chalothorn D et al (2008) Vascular endothelial growth factor-A specifies formation of native collaterals and regulates collateral growth in ischemia. Circ Res 103(9):1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clifford RL, Deacon K et al (2008) Novel regulation of vascular endothelial growth factor-A (VEGF-A) by transforming growth factor (beta)1: requirement for Smads, (beta)-CATENIN, AND GSK3(beta). J Biol Chem 283(51):35337–35353

    Article  CAS  PubMed  Google Scholar 

  • Cochain C, Rodero MP et al (2010) Regulation of monocyte subset systemic levels by distinct chemokine receptors controls post-ischaemic neovascularization. Cardiovasc Res 88(1):186–195

    Article  CAS  PubMed  Google Scholar 

  • Colleran PN, Li Z et al (2010) Vasoresponsiveness of collateral vessels in the rat hindlimb: influence of training. J Physiol 588(Pt 8):1293–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordes KR, Sheehy NT et al (2009) miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 460(7256):705–710

    CAS  PubMed  PubMed Central  Google Scholar 

  • Couffinhal T, Silver M et al (1999) Impaired collateral vessel development associated with reduced expression of vascular endothelial growth factor in ApoE-/- mice. Circulation 99(24):3188–3198

    Article  CAS  PubMed  Google Scholar 

  • Coultas L, Chawengsaksophak K et al (2005) Endothelial cells and VEGF in vascular development. Nature 438(7070):937–945

    Article  CAS  PubMed  Google Scholar 

  • Courtney SM, Massett MP (2012) Identification of exercise capacity QTL using association mapping in inbred mice. Physiol Genomics 44(19):948–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai X, Faber JE (2010) Endothelial nitric oxide synthase deficiency causes collateral vessel rarefaction and impairs activation of a cell cycle gene network during arteriogenesis. Circ Res 106(12):1870–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Moor MH, Liu YJ et al (2009) Genome-wide association study of exercise behavior in Dutch and American adults. Med Sci Sports Exerc 41(10):1887–1895

    Article  PubMed  PubMed Central  Google Scholar 

  • Dedkov EI, Zheng W et al (2006) Compensatory growth of coronary arterioles in postinfarcted heart: regional differences in DNA synthesis and growth factor/receptor expression patterns. Am J Physiol Heart Circ Physiol 291(4):H1686–H1693

    Article  CAS  PubMed  Google Scholar 

  • Deindl E, Buschmann I et al (2001) Role of ischemia and of hypoxia-inducible genes in arteriogenesis after femoral artery occlusion in the rabbit. Circ Res 89(9):779–786

    Article  CAS  PubMed  Google Scholar 

  • Dokun AO, Keum S et al (2008) A quantitative trait locus (LSq-1) on mouse chromosome 7 is linked to the absence of tissue loss after surgical hindlimb ischemia. Circulation 117(9):1207–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drake TA, Schadt EE et al (2006) Integrating genetic and gene expression data: application to cardiovascular and metabolic traits in mice. Mamm Genome 17(6):466–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erami C, Zhang H et al (2005) Adrenergic catecholamine trophic activity contributes to flow-mediated arterial remodeling. Am J Physiol Heart Circ Physiol 289(2):H744–H753

    Article  CAS  PubMed  Google Scholar 

  • Faber JE, Zhang H et al (2011) Aging causes collateral rarefaction and increased severity of ischemic injury in multiple tissues. Arterioscler Thromb Vasc Biol 31(8):1748–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Festa A, D’Agostino R Jr et al (1999) Is QT interval a marker of subclinical atherosclerosis in nondiabetic subjects? The Insulin Resistance Atherosclerosis Study (IRAS). Stroke 30(8):1566–1571

    Article  CAS  PubMed  Google Scholar 

  • Friedlander M, Brooks PC et al (1995) Definition of two angiogenic pathways by distinct alpha v integrins. Science 270(5241):1500–1502

    Article  CAS  PubMed  Google Scholar 

  • Galis ZS, Johnson C et al (2002) Targeted disruption of the matrix metalloproteinase-9 gene impairs smooth muscle cell migration and geometrical arterial remodeling. Circ Res 91(9):852–859

    Article  CAS  PubMed  Google Scholar 

  • Gielen S, Schuler G et al (2001) Exercise training in coronary artery disease and coronary vasomotion. Circulation 103(1):E1–E6

    Article  CAS  PubMed  Google Scholar 

  • Giordano FJ, Ping P et al (1996) Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med 2(5):534–539

    Article  CAS  PubMed  Google Scholar 

  • Gray C, Packham IM et al (2007) Ischemia is not required for arteriogenesis in zebrafish embryos. Arterioscler Thromb Vasc Biol 27(10):2135–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas TL, Lloyd PG et al (2012) Exercise training and peripheral arterial disease. Compr Physiol 2(4):2933–3017

    PubMed  PubMed Central  Google Scholar 

  • Hans FP, Moser M et al (2010) MicroRNA regulation of angiogenesis and arteriogenesis. Trends Cardiovasc Med 20(8):253–262

    Article  CAS  PubMed  Google Scholar 

  • Harmon KJ, Couper LL et al (2000) Strain-dependent vascular remodeling phenotypes in inbred mice. Am J Pathol 156(5):1741–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hata T, Takahashi M et al (2011) Critical role of Th17 cells in inflammation and neovascularization after ischaemia. Cardiovasc Res 90(2):364–372

    Article  CAS  PubMed  Google Scholar 

  • Heil M, Ziegelhoeffer T et al (2002) Blood monocyte concentration is critical for enhancement of collateral artery growth. Am J Physiol Heart Circ Physiol 283(6):H2411–H2419

    Article  CAS  PubMed  Google Scholar 

  • Heil M, Ziegelhoeffer T et al (2004) Collateral artery growth (arteriogenesis) after experimental arterial occlusion is impaired in mice lacking CC-chemokine receptor-2. Circ Res 94(5):671–677

    Article  CAS  PubMed  Google Scholar 

  • Heinzer S, Kuhn G et al (2008) Novel three-dimensional analysis tool for vascular trees indicates complete micro-networks, not single capillaries, as the angiogenic endpoint in mice overexpressing human VEGF(165) in the brain. Neuroimage 39(4):1549–1558

    Article  PubMed  Google Scholar 

  • Helisch A, Wagner S et al (2006) Impact of mouse strain differences in innate hindlimb collateral vasculature. Arterioscler Thromb Vasc Biol 26(3):520–526

    Article  CAS  PubMed  Google Scholar 

  • Hilgers RH, Schiffers PM et al (2004) Tissue angiotensin-converting enzyme in imposed and physiological flow-related arterial remodeling in mice. Arterioscler Thromb Vasc Biol 24(5):892–897

    Article  CAS  PubMed  Google Scholar 

  • Hutcheson R, Terry R et al (2013) MicroRNA-145 restores contractile vascular smooth muscle phenotype and coronary collateral growth in the metabolic syndrome. Arterioscler Thromb Vasc Biol 33(4):727–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim J, Miyashiro JK et al (2003) Shear stress is differentially regulated among inbred rat strains. Circ Res 92:1001–1009

    Article  CAS  PubMed  Google Scholar 

  • Kamada F, Aoki Y et al (2011) A genome-wide association study identifies RNF213 as the first Moyamoya disease gene. J Hum Genet 56(1):34–40

    Article  CAS  PubMed  Google Scholar 

  • Kamiya A, Togawa T (1980) Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am J Physiol 239(1):H14–H21

    CAS  PubMed  Google Scholar 

  • Keum S, Marchuk DA (2009) A locus mapping to mouse chromosome 7 determines infarct volume in a mouse model of ischemic stroke. Circ Cardiovasc Genet 2(6):591–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keum S, Lee HK et al (2013) Natural genetic variation of integrin alpha L (itgal) modulates ischemic brain injury in stroke. PLoS Genet 9(10):e1003807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khatri JJ, Johnson C et al (2004) Vascular oxidant stress enhances progression and angiogenesis of experimental atheroma. Circulation 109(4):520–525

    Article  CAS  PubMed  Google Scholar 

  • Korff T, Braun J et al (2008) Role of ephrinB2 expression in endothelial cells during arteriogenesis: impact on smooth muscle cell migration and monocyte recruitment. Blood 112(1):73–81

    Article  CAS  PubMed  Google Scholar 

  • Korshunov VA, Berk BC (2003) Flow-induced vascular remodeling in the mouse: a model for carotid intima-media thickening. Arterioscler Thromb Vasc Biol 23(12):2185–2191

    Article  CAS  PubMed  Google Scholar 

  • Korshunov VA, Berk BC (2004) Strain-dependent vascular remodeling: the “Glagov phenomenon” is genetically determined. Circulation 110(2):220–226

    Article  PubMed  Google Scholar 

  • Korshunov VA, Berk BC (2009) Genetic modifier loci linked to intima formation induced by low flow in the mouse carotid. Arterioscler Thromb Vasc Biol 29(1):47–53

    Article  CAS  PubMed  Google Scholar 

  • Korshunov VA, Schwartz SM et al (2007) Vascular remodeling: hemodynamic and biochemical mechanisms underlying Glagov’s phenomenon. Arterioscler Thromb Vasc Biol 27(8):1722–1728

    Article  CAS  PubMed  Google Scholar 

  • Lamping KG, Zheng W et al (2005) Bradycardia stimulates vascular growth during gradual coronary occlusion. Arterioscler Thromb Vasc Biol 25(10):2122–2127

    Article  CAS  PubMed  Google Scholar 

  • Langille BL, O’Donnell F (1986) Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231(4736):405–407

    Article  CAS  PubMed  Google Scholar 

  • Lei L, Zhou R et al (2004) Bradycardia induces angiogenesis, increases coronary reserve, and preserves function of the postinfarcted heart. Circulation 110(7):796–802

    Article  PubMed  Google Scholar 

  • Li Q, Li Y et al (2008) Quantitative trait locus analysis of carotid atherosclerosis in an intercross between C57BL/6 and C3H apolipoprotein E-deficient mice. Stroke 39(1):166–173

    Article  CAS  PubMed  Google Scholar 

  • Limbourg A, Ploom M et al (2007) Notch ligand Delta-like 1 is essential for postnatal arteriogenesis. Circ Res 100(3):363–371

    Article  CAS  PubMed  Google Scholar 

  • Lin TH, Wang CL et al (2010) Functional vascular endothelial growth factor gene polymorphisms and diabetes: effect on coronary collaterals in patients with significant coronary artery disease. Clin Chim Acta 411(21–22):1688–1693

    Article  CAS  PubMed  Google Scholar 

  • Lindahl P, Johansson BR et al (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277(5323):242–245

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Sweet DT et al (2008) Shc coordinates signals from intercellular junctions and integrins to regulate flow-induced inflammation. J Cell Biol 182(1):185–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucitti JL, Mackey JK et al (2012) Formation of the collateral circulation is regulated by vascular endothelial growth factor-A and a disintegrin and metalloprotease family members 10 and 17. Circ Res 111(12):1539–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malek AM, Alper SL et al (1999) Hemodynamic shear stress and its role in atherosclerosis. Jama 282(21):2035–2042

    Article  CAS  PubMed  Google Scholar 

  • Manolio TA, Brooks LD et al (2008) A HapMap harvest of insights into the genetics of common disease. J Clin Invest 118(5):1590–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell MP, Hearse DJ et al (1987) Species variation in the coronary collateral circulation during regional myocardial ischaemia: a critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovasc Res 21(10):737–746

    Article  CAS  PubMed  Google Scholar 

  • Meier P, Antonov J et al (2009) Non-invasive gene-expression-based detection of well-developed collateral function in individuals with and without coronary artery disease. Heart 95(11):900–908

    Article  CAS  PubMed  Google Scholar 

  • Miller SJ, Coppinger BJ et al (2010) Antioxidants reverse age-related collateral growth impairment. J Vasc Res 47(2):108–114

    Article  CAS  PubMed  Google Scholar 

  • Miyashiro JK, Poppa V et al (1997) Flow-induced vascular remodeling in the rat carotid diminishes with age. Circ Res 81:311–319

    Article  CAS  PubMed  Google Scholar 

  • Morishita T, Tsutsui M et al (2002) Vasculoprotective roles of neuronal nitric oxide synthase. Faseb J 16(14):1994–1996

    CAS  PubMed  Google Scholar 

  • Mulvany MJ, Baumbach GL et al (1996) Vascular remodeling. Hypertension 28(3):505–506

    CAS  PubMed  Google Scholar 

  • Neufeld G, Cohen T et al (1999) Vascular endothelial growth factor (VEGF) and its receptors. Faseb J 13(1):9–22

    CAS  PubMed  Google Scholar 

  • O’Leary DH, Polak JF et al (1999) Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med 340(1):14–22

    Article  PubMed  Google Scholar 

  • Patel SR, Breall JA et al (2000) Bradycardia is associated with development of coronary collateral vessels in humans. Coron Artery Dis 11(6):467–472

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Wang J et al (2011) Gender differences affect blood flow recovery in a mouse model of hindlimb ischemia. Am J Physiol Heart Circ Physiol 300(6):H2027–H2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pipp F, Heil M et al (2003) VEGFR-1-selective VEGF homologue PlGF is arteriogenic: evidence for a monocyte-mediated mechanism. Circ Res 92(4):378–385

    Article  CAS  PubMed  Google Scholar 

  • Price RJ, Owens GK et al (1994) Immunohistochemical identification of arteriolar development using markers of smooth muscle differentiation. Evidence that capillary arterialization proceeds from terminal arterioles. Circ Res 75(3):520–527

    Article  CAS  PubMed  Google Scholar 

  • Prior BM, Ren J et al (2011) Significant, but limited collateral blood flow increases occur with prolonged training in rats with femoral artery occlusion. J Physiol Pharmacol 62(2):197–205

    CAS  PubMed  Google Scholar 

  • Riggs HE, Rupp C (1963) Variation in form of circle of Willis. The relation of the variations to collateral circulation: anatomic analysis. Arch Neurol 8:8–14

    Article  CAS  PubMed  Google Scholar 

  • Rissanen TT, Markkanen JE et al (2003) Fibroblast growth factor 4 induces vascular permeability, angiogenesis and arteriogenesis in a rabbit hindlimb ischemia model. FASEB J 17(1):100–102

    CAS  PubMed  Google Scholar 

  • Rudic RD, Bucci M et al (2000) Temporal events underlying arterial remodeling after chronic flow reduction in mice: correlation of structural changes with a deficit in basal nitric oxide synthesis. Circ Res 86(11):1160–1166

    Article  CAS  PubMed  Google Scholar 

  • Schaper W (2009) Collateral circulation: past and present. Basic Res Cardiol 104(1):5–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaper J, Konig R et al (1976) The endothelial surface of growing coronary collateral arteries. Intimal margination and diapedesis of monocytes. A combined SEM and TEM study. Virchows Arch A Pathol Anat Histol 370(3):193–205

    Article  CAS  PubMed  Google Scholar 

  • Schiffers PM, Henrion D et al (2000) Altered flow-induced arterial remodeling in vimentin-deficient mice. Arterioscler Thromb Vasc Biol 20(3):611–616

    Article  CAS  PubMed  Google Scholar 

  • Schirmer SH, van Royen N et al (2009) Local cytokine concentrations and oxygen pressure are related to maturation of the collateral circulation in humans. J Am Coll Cardiol 53(23):2141–2147

    Article  CAS  PubMed  Google Scholar 

  • Scholz D, Ito W et al (2000) Ultrastructure and molecular histology of rabbit hind-limb collateral artery growth (arteriogenesis). Virchows Arch 436(3):257–270

    Article  CAS  PubMed  Google Scholar 

  • Scholz D, Ziegelhoeffer T et al (2002) Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in mice. J Mol Cell Cardiol 34(7):775–787

    Article  CAS  PubMed  Google Scholar 

  • Seki A, Tanaka T et al (1978) Increased vascular permeability of developing collateral arteries after femoral artery ligation in rabbits. Jpn Heart J 19(6):895–903

    Article  CAS  PubMed  Google Scholar 

  • Sheridan KM, Ferguson MJ et al (2007) Impact of genetic background and aging on mesenteric collateral growth capacity in Fischer 344, Brown Norway, and Fischer 344 x Brown Norway hybrid rats. Am J Physiol Heart Circ Physiol 293(6):H3498–H3505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuaib A, Butcher K et al (2011) Collateral blood vessels in acute ischaemic stroke: a potential therapeutic target. Lancet Neurol 10(10):909–921

    Article  PubMed  Google Scholar 

  • Shukla A, Malik M et al (2009) TGF-beta signalling is regulated by Schnurri-2-dependent nuclear translocation of CLIC4 and consequent stabilization of phospho-Smad2 and 3. Nat Cell Biol 11(6):777–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smolock EM, Ilyushkina IA et al (2012) A genetic locus on mouse chromosome 7 controls elevated heart rate. Physiol Genomics 44:689–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smolock EM, Machleder DE et al (2013) Identification of a genetic locus on chromosome 11 that regulates leukocyte infiltration in mouse carotid artery. Arterioscler Thromb Vasc Biol 33(5):1014–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonntag WE, Lynch CD et al (1997) Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin-like growth factor 1. Endocrinology 138(8):3515–3520

    CAS  PubMed  Google Scholar 

  • Stabile E, Burnett MS et al (2003) Impaired arteriogenic response to acute hindlimb ischemia in CD4-knockout mice. Circulation 108(2):205–210

    Article  PubMed  Google Scholar 

  • Stabile E, Kinnaird T et al (2006) CD8+ T lymphocytes regulate the arteriogenic response to ischemia by infiltrating the site of collateral vessel development and recruiting CD4+ mononuclear cells through the expression of interleukin-16. Circulation 113(1):118–124

    Article  PubMed  Google Scholar 

  • Stewart KJ, Hiatt WR et al (2002) Exercise training for claudication. N Engl J Med 347(24):1941–1951

    Article  PubMed  Google Scholar 

  • Sullivan C, Hoying J (2002) Flow-dependent remodeling in the carotid artery of fibroblast growth factor-2 knockout mice. Arterioscler Thromb Vasc Biol 22(7):1100–1105

    Article  CAS  PubMed  Google Scholar 

  • Suzuki J, Kodama N (1971) Cerebrovascular “Moyamoya” disease. 2. Collateral routes to forebrain via ethmoid sinus and superior nasal meatus. Angiology 22(4):223–236

    Article  CAS  PubMed  Google Scholar 

  • Sweet DT, Chen Z et al (2013) Endothelial Shc regulates arteriogenesis through dual control of arterial specification and inflammation via the notch and nuclear factor-kappa-light-chain-enhancer of activated B-cell pathways. Circ Res 113(1):32–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda Y, Costa S et al (2011) Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis. Nature 479(7371):122–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarhouni K, Guihot AL et al (2013) Key role of estrogens and endothelial estrogen receptor alpha in blood flow-mediated remodeling of resistance arteries. Arterioscler Thromb Vasc Biol 33(3):605–611

    Article  CAS  PubMed  Google Scholar 

  • Tritsaris K, Myren M et al (2007) IL-20 is an arteriogenic cytokine that remodels collateral networks and improves functions of ischemic hind limbs. Proc Natl Acad Sci U S A 104(39):15364–15369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tung JJ, Hobert O et al (2009) Chloride intracellular channel 4 is involved in endothelial proliferation and morphogenesis in vitro. Angiogenesis 12(3):209–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzima E, Irani-Tehrani M et al (2005) A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437(7057):426–431

    Article  CAS  PubMed  Google Scholar 

  • Ueno H, Li JJ et al (1997) Adenovirus-mediated expression of the secreted form of basic fibroblast growth factor (FGF-2) induces cellular proliferation and angiogenesis in vivo. Arterioscler Thromb Vasc Biol 17(11):2453–2460

    Article  CAS  PubMed  Google Scholar 

  • van Weel V, Toes RE et al (2007) Natural killer cells and CD4+ T-cells modulate collateral artery development. Arterioscler Thromb Vasc Biol 27(11):2310–2318

    Article  PubMed  CAS  Google Scholar 

  • Vogel J, Gehrig M et al (2004) Massive inborn angiogenesis in the brain scarcely raises cerebral blood flow. J Cereb Blood Flow Metab 24(8):849–859

    Article  CAS  PubMed  Google Scholar 

  • Voskuil M, Hoefer IE et al (2004) Abnormal monocyte recruitment and collateral artery formation in monocyte chemoattractant protein-1 deficient mice. Vasc Med 9(4):287–292

    Article  PubMed  Google Scholar 

  • Waeckel L, Mallat Z et al (2005) Impairment in postischemic neovascularization in mice lacking the CXC chemokine receptor 3. Circ Res 96(5):576–582

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Zhang H et al (2010) Genetic architecture underlying variation in extent and remodeling of the collateral circulation. Circ Res 107(4):558–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Peng X et al (2011) Aging-induced collateral dysfunction: impaired responsiveness of collaterals and susceptibility to apoptosis via dysfunctional eNOS signaling. J Cardiovasc Transl Res 4(6):779–789

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Zhang H et al (2012) Genetic dissection of the Canq1 locus governing variation in extent of the collateral circulation. PLoS One 7(3):e31910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf C, Cai WJ et al (1998) Vascular remodeling and altered protein expression during growth of coronary collateral arteries. J Mol Cell Cardiol 30(11):2291–2305

    Article  CAS  PubMed  Google Scholar 

  • Wright AJ, Hudlicka O (1981) Capillary growth and changes in heart performance induced by chronic bradycardial pacing in the rabbit. Circ Res 49(2):469–478

    Article  CAS  PubMed  Google Scholar 

  • Yang HT, Deschenes MR et al (1996) Basic fibroblast growth factor increases collateral blood flow in rats with femoral arterial ligation. Circ Res 79(1):62–69

    Article  CAS  PubMed  Google Scholar 

  • Yang HT, Prior BM et al (2008) Training-induced vascular adaptations to ischemic muscle. J Physiol Pharmacol 59(Suppl 7):57–70

    PubMed  PubMed Central  Google Scholar 

  • Yang K, Banerjee S et al (2013) Regulation of pre-natal circle of Willis assembly by vascular smooth muscle Notch signaling. Dev Biol 381(1):107–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao H, Cui ZH et al (2007) Congenic removal of a QTL for blood pressure attenuates infarct size produced by middle cerebral artery occlusion in hypertensive rats. Physiol Genomics 30(1):69–73

    Article  CAS  PubMed  Google Scholar 

  • Yogo K, Shimokawa H et al (2000) Different vasculoprotective roles of NO synthase isoforms in vascular lesion formation in mice. Arterioscler Thromb Vasc Biol 20(11):E96–E100

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Fernandez-Hernando C et al (2009) Reticulon 4B (Nogo-B) is necessary for macrophage infiltration and tissue repair. Proc Natl Acad Sci U S A 106(41):17511–17516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Regieli JJ et al (2008) Inflammatory gene haplotype-interaction networks involved in coronary collateral formation. Hum Hered 66(4):252–264

    Article  PubMed  Google Scholar 

  • Zhang H, Prabhakar P et al (2010) Wide genetic variation in the native pial collateral circulation is a major determinant of variation in severity of stroke. J Cereb Blood Flow Metab 30(5):923–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng W, Brown MD et al (1999) Bradycardia-induced coronary angiogenesis is dependent on vascular endothelial growth factor. Circ Res 85(2):192–198

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Christensen LP et al (2008) Differential effects of cyclic and static stretch on coronary microvascular endothelial cell receptors and vasculogenic/angiogenic responses. Am J Physiol Heart Circ Physiol 295(2):H794–H800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Sutliff RL et al (1998) Fibroblast growth factor 2 control of vascular tone. Nat Med 4(2):201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegelhoeffer T, Fernandez B et al (2004) Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res 94(2):230–238

    Article  CAS  PubMed  Google Scholar 

  • Zouggari Y, Ait-Oufella H et al (2009) Regulatory T cells modulate postischemic neovascularization. Circulation 120(14):1415–1425

    Article  PubMed  Google Scholar 

Further Reading

  • Faber JE, Dai X et al (2011) Genetic and environmental mechanisms controlling formation and maintenance of the native collateral circulation. In: Deindl IE, Schaper W (eds) Arteriogenesis – molecular regulation, pathophysiology and therapeutics. Shaker Verlag, Aachen, pp 1–22

    Google Scholar 

Download references

Acknowledgments

I would like to thank Dr. Eric Small for critical reading of the manuscript. This study was supported in part by funds from HL105623 (VAK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav “Slava” A. Korshunov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Korshunov, V.“.A. (2015). Arteriogenesis and Collateral Formation. In: Lanzer, P. (eds) PanVascular Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37078-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37078-6_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37077-9

  • Online ISBN: 978-3-642-37078-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics