Advertisement

Exploratory Spatial Data Analysis

  • Jürgen SymanzikEmail author
Living reference work entry

Abstract

In this chapter, we discuss key concepts for exploratory spatial data analysis (ESDA). We start with its close relationship to exploratory data analysis (EDA) and introduce different types of spatial data. Then, we discuss how to explore spatial data via different types of maps and via linking and brushing. A key technique for ESDA is local indicators of spatial association (LISA). ESDA needs to be supported by software. We discuss two main lines of software developments: GIS-based solutions and stand-alone solutions.

Keywords

Geographic information system Spatial data Exploratory data analysis Spatial point pattern Modifiable areal unit problem 

References

  1. Andrienko N, Andrienko G, Savinov A, Voss H, Wettschereck D (2001) Exploratory analysis of spatial data using interactive maps and data mining. Cartogr Geogr Inform Sci 28(3):151–165CrossRefGoogle Scholar
  2. Anscombe FJ (1973) Graphs in statistical analysis. Am Statistician 27(1):17–21Google Scholar
  3. Anselin L (1994) Exploratory spatial data analysis and geographic information systems. In: Painho M (ed) New tools for spatial analysis. Eurostat, Luxembourg, pp 45–54Google Scholar
  4. Anselin L (1995) Local indicators of spatial association – LISA. Geogr Anal 27(2):93–115CrossRefGoogle Scholar
  5. Anselin L, Dodson RF, Hudak S (1993) Linking GIS and spatial data analysis in practice. Geogr Sys 1(1):3–23Google Scholar
  6. Anselin L, Syabri I, Kho Y (2006) GeoDa: an introduction to spatial data analysis. Geogr Anal 38(1):5–22CrossRefGoogle Scholar
  7. Bivand RS (2010) Exploratory spatial data analysis. In: Fischer MM, Getis A (eds) Handbook of applied spatial analysis: software tools, methods and applications. Springer, Berlin/Heidelberg, pp 219–254CrossRefGoogle Scholar
  8. Brunsdon C, Comber L (2019) An introduction to R for spatial analysis & mapping, 2nd edn. Sage, LondonGoogle Scholar
  9. Carr DB, Pickle LW (2010) Visualizing data patterns with micromaps. Chapman & Hall/CRC, Boca RatonCrossRefGoogle Scholar
  10. Carr DB, Wallin JF, Carr DA (2000) Two new templates for epidemiology applications: linked micromap plots and conditioned choropleth maps. Stat Med 19(17–18):2521–2538CrossRefGoogle Scholar
  11. Cressie NAC (1993) Statistics for spatial data, revised edn. Wiley, New YorkGoogle Scholar
  12. Fischer MM, Wang J (2011) Spatial data analysis: models, methods and techniques. Springer, Berlin/Heidelberg/New YorkCrossRefGoogle Scholar
  13. Fotheringham AS (1992) Exploratory spatial data analysis and GIS. Environ Plann A 24(2):1675–1678Google Scholar
  14. Harrower MA, Brewer CA (2003) ColorBrewer.org: an online tool for selecting color schemes for maps. Cartogr J 40(1):27–37CrossRefGoogle Scholar
  15. Haslett J, Wills G, Unwin A (1990) SPIDER – an interactive statistical tool for the analysis of spatially distributed data. Int J Geogr Inform Syst 4(3):285–296Google Scholar
  16. Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comput Graph Stat 5(3):299–314Google Scholar
  17. Liu L, Marble D (1997) Brushing spatial flow data sets. In: 1997 proceedings of the Section on Statistical Graphics. American Statistical Association, Alexandria, pp 67–72Google Scholar
  18. Monmonier M (1989) Geographic brushing: enhancing exploratory analysis of the scatterplot matrix. Geogr Anal 21(1):81–84CrossRefGoogle Scholar
  19. Monmonier M (1996) How to lie with maps, 2nd edn. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  20. Openshaw S (1984) The modifiable areal unit problem. In: Concepts and techniques in modern geography no. 38. Geo Books, NorwichGoogle Scholar
  21. Ord JK, Getis A (2012) Local spatial heteroscedasticity (LOSH). Ann Reg Sci 48(2):529–539CrossRefGoogle Scholar
  22. Osiecki KM, Kim S, Chukwudozie IB, Calhoun EA (2013) Utilizing exploratory spatial data analysis to examine health and environmental disparities in disadvantaged neighborhoods. Environ Justice 6(3):81–87CrossRefGoogle Scholar
  23. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/Google Scholar
  24. Ripley BD (1981) Spatial statistics. Wiley, New YorkCrossRefGoogle Scholar
  25. Rosling H, Johansson C (2009) Gapminder: liberating the x–axis from the burden of time. Stat Comput Stat Graph Newslett 20(1):4–7Google Scholar
  26. Snow J (1936) Snow on cholera: being a reprint of two papers by John Snow, M.D. together with a biographical memoir by B. W. Richardson, M.D. and an introduction by Wade Hampton Frost, M.D. The Commonwealth Fund/Oxford University Press, New York/LondonGoogle Scholar
  27. Symanzik J (2012) Interactive and dynamic graphics. In: Gentle JE, Härdle WK, Mori Y (eds) Handbook of computational statistics – concepts and methods, 2nd edn. Springer, Berlin/Heidelberg, pp 335–373CrossRefGoogle Scholar
  28. Symanzik J, Carr DB (2008) Interactive linked micromap plots for the display of geographically referenced statistical data. In: Chen C, Härdle W, Unwin A (eds) Handbook of data visualization. Springer, Berlin/Heidelberg, pp 267–294. & 2 color platesCrossRefGoogle Scholar
  29. Symanzik J, Cook D, Lewin-Koh N, Majure JJ, Megretskaia I (2000) Linking ArcView and XGobi: insight behind the front end. J Comput Graph Stat 9(3):470–490Google Scholar
  30. Tukey JW (1977) Exploratory data analysis. Addison Wesley, ReadingGoogle Scholar
  31. Unwin A, Wills G, Haslett J (1990) REGARD – graphical analysis of regional data. In: 1990 proceedings of the Section on Statistical Graphics. American Statistical Association, Alexandria, pp 36–41Google Scholar
  32. Wang X, Chen JX, Carr DB, Bell BS, Pickle LW (2002) Geographic statistics visualization: web–based linked micromap plots. Comput Sci Eng 4(3):90–94CrossRefGoogle Scholar
  33. Wilson B, Greenlee AJ (2016) The geography of opportunity: an exploratory spatial data analysis of U.S. counties. GeoJournal 81(4):625–640CrossRefGoogle Scholar

Further Reading

  1. Bao S, Anselin L (1997) Linking spatial statistics with GIS: operational issues in the SpaceStat–ArcView link and the S + Grassland link. In: 1997 proceedings of the Section on Statistical Graphics. American Statistical Association, Alexandria, pp 61–66Google Scholar
  2. Carr DB, Chen J, Bell BS, Pickle LW, Zhang Y (2002) Interactive linked micromap plots and dynamically conditioned choropleth maps. In: Proceedings of the second national conference on digital government research, Digital Government Research Center (DGRC), pp 61–67. http://www.dgrc.org/conferences/2002_proceedings.jsp
  3. Cook D, Majure JJ, Symanzik J, Cressie N (1996) Dynamic graphics in a GIS: exploring and analyzing multivariate spatial data using linked software. Comput Stat 11(4):467–480. Special issue on computeraided analysis of spatial dataGoogle Scholar
  4. Kahle D, Wickham H (2013) ggmap: spatial visualization with ggplot2. R Journal 5(1):144–161CrossRefGoogle Scholar
  5. Payton QC, McManus MG, Weber MH, Olsen AR, Kincaid TM (2015) micromap: a package for linked micromaps. J Stat Softw 63(2). http://www.jstatsoft.org/v63/i02/
  6. Pickle LW, Pearson JB Jr, Carr DB (2015) micromapST: exploring and communicating geospatial patterns in U.S. state data. J Stat Softw 63(3). http://www.jstatsoft.org/v63/i03/
  7. Tennekes M (2018) tmap: thematic maps in R. J Stat Softw 84(6). http://www.jstatsoft.org/v84/i06/
  8. Unwin A (1994) REGARDing geographic data. In: Dirschedl P, Ostermann R (eds) Computational statistics. Physica–Verlag, Heidelberg, pp 315–326CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUtah State UniversityLoganUSA

Personalised recommendations