Skip to main content

Cellular Automata and Agent-Based Models

  • Living reference work entry
  • First Online:
Handbook of Regional Science

Abstract

Two classes of models that have made major breakthroughs in regional science in the last two decades are cellular automata (CA) and agent-based models (ABM). These are both complex systems approaches and are built on creating microscale elemental agents and actions that, when permuted over time and in space, result in forms of aggregate behavior that are not achievable by other forms of modeling. For each type of model, the origins are explored, as are the key contributions and applications of the models and the software used. While CA and ABM share a heritage in complexity science and many properties, nevertheless each has its own most suitable application domains. Some practical examples of each model type are listed and key further information sources referenced. In spite of issues of data input, calibration, and validation, both modeling methods have significantly advanced the role of modeling and simulation in geography and regional science and gone a long way toward making models more accountable and more meaningful at the base level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Andersson C, Frenken K, Hcllervik A (2006) A complex network approach to urban growth. Environ Plan A 38(10):1941–1964

    Article  Google Scholar 

  • Batty M (2000) Geocomputation using cellular automata. In: Openshaw S, Abrahart RJ (eds) GeoComputation. Taylor and Francis, London, pp 95–126

    Google Scholar 

  • Batty M (2005) Cities and complexity: understanding cities with cellular automata, agent-based models, and fractals. MIT Press, Cambridge, MA

    Google Scholar 

  • Batty M, Longley P (1994) Fractal cities: a geometry of form and function. Academic, San Diego/London

    Google Scholar 

  • Benenson I (2007) Warning! The scale of land-use CA is changing! Comput Environ Urban Syst 31(2):107–113

    Article  Google Scholar 

  • Benenson I, Torrens PM (2004) Geosimulation: automata-based modeling of urban phenomena. Wiley, New York

    Book  Google Scholar 

  • Benenson I, Erez H, Ehud O (2009) From Schelling to spatially explicit modeling of urban ethnic and economic residential dynamics. Sociol Methods Res 37(4):463–497

    Article  Google Scholar 

  • Bithell M, Brasington J, Richards K (2008) Discrete-element, individual-based and agent-based models: tools for interdisciplinary enquiry in Geography? Geoforum 39(2):625–642

    Article  Google Scholar 

  • Clarke KC (2008a) Mapping and modelling land use change: an application of the SLEUTH model. In: Pettit C, Cartwright W, Bishop I, Lowell K, Pullar D, Duncan D (eds) Landscape analysis and visualisation: spatial models for natural resource management and planning. Springer, Berlin, pp 353–366

    Chapter  Google Scholar 

  • Clarke KC (2008b) A decade of cellular urban modeling with SLEUTH: unresolved issues and problems, Chapter 3. In: Brail RK (ed) Planning support systems for cities and regions. Lincoln Institute of Land Policy, Cambridge, MA, pp 47–60

    Google Scholar 

  • Clarke KC, Hoppen S, Gaydos L (1997) A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ Plann B Plann Des 24(2):247–261

    Article  Google Scholar 

  • Clarke KC, Gazulis N, Dietzel CK, Goldstein NC (2007) A decade of SLEUTHing: lessons learned from applications of a cellular automaton land use change model, Chapter 16. In: Fisher P (ed) Classics from IJGIS. Twenty years of the international journal of geographical information systems and science. Taylor and Francis/CRC Press, Boca Raton, pp 413–425

    Google Scholar 

  • Clifford NJ (2008) Models in geography revisited. Geoforum 39(2):675–686

    Article  Google Scholar 

  • Gardner M (1970) Mathematical games: the fantastic combinations of John Conway’s new solitaire game “life”. Sci Am 223(9):120–123

    Article  Google Scholar 

  • Gilbert N, Troitzsch KG (1999) Simulation for the Social Scientist. Milton Keynes: Open University Press.

    Google Scholar 

  • Gimblett HR (2002) Integrating geographic information systems and agent-based modeling techniques for simulating social and ecological processes. Institute Studies in the Sciences of Complexity, Oxford University Press, Santa Fe

    Google Scholar 

  • Hatna E, Benenson I (2012) The Schelling model of ethnic residential dynamics: beyond the integrated – segregated dichotomy of patterns. J Artif Soc Soc Simul 15(1):6

    Article  Google Scholar 

  • Hedlund GA (1969) Endomorphisms and automorphisms of the shift dynamical system. Math Syst Theory 3(4):320–3751

    Article  Google Scholar 

  • Holland JK (1998) Emergence: from chaos to order. Addison-Wesley, Redwood City

    Google Scholar 

  • McDonnell S, Zellner M (2011) Moira exploring the effectiveness of bus rapid transit a prototype agent-based model of commuting behavior. Transp Policy 18(6):825–835

    Article  Google Scholar 

  • Miller HJ (2009) Geocomputation. In: Fotheringham AS, Rogerson PA (eds) The SAGE handbook of spatial analysis. Sage, London, pp 397–418

    Google Scholar 

  • Neutens T, Witlox F, Van de Weghe N, De Maeyer PH (2007) Space-time opportunities for multiple agents: a constraint-based approach. Int J Geogr Inf Sci 21(10):1061–1076

    Article  Google Scholar 

  • Niazi M, Hussain A (2011) Agent-based computing from multi-agent systems to agent-based models: a visual survey. Springer Scientometr 89(2):479–499

    Article  Google Scholar 

  • O’Sullivan D, Hakley M (2000) Agent-based models and individualism: is the world agent-based? Environ Plan A 32(8):1409–1425

    Article  Google Scholar 

  • Parker DC, Berger T, Manson SM (2002) Agent-based models of land-use and land-cover change. LUCC report series no. 6. Indiana University, Bloomington

    Google Scholar 

  • Parker DC, Manson SM, Janssen MA, Hoffmann MJ, Deadman P (2003) Multi-agent system models for the simulation of land-use and land-cover change: a review. Ann Assoc Am Geogr 93(2):314–337

    Article  Google Scholar 

  • Railsback SF, Lytinen SL, Jackson SK (2006) Agent-based simulation platforms: review and development recommendations. Simulation 82(9):609–623

    Article  Google Scholar 

  • Read D (2010) Agent-based and multi-agent simulations: coming of age or in search of an identity? Comput Math Organ Theory 16(4):329–347. Special Issue

    Article  Google Scholar 

  • Sante I, Garcia AM, Miranda D, Crecente R (2010) Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landsc Urban Plan 96(2):108–122

    Article  Google Scholar 

  • Schelling T (1971) Dynamic models of segregation. J Math Sociol 1(2):143–186

    Article  Google Scholar 

  • Silva EA (2010) Complexity and CA, and application to metropolitan areas. In: de Roo G, Silva EA (eds) A planner’s encounter with complexity. Ashgate, Aldershot, pp 187–207

    Google Scholar 

  • Spencer GM (2012) Creative economies of scale: an agent-based model of creativity and agglomeration. J Econ Geogr 12(1):247–271

    Article  Google Scholar 

  • Takeyama M, Couclelis H (1997) Map dynamics: integrating cellular automata and GIS through geo-algebra. Int J Geogr Inf Sci 11(1):73–91

    Article  Google Scholar 

  • Torrens PM (2012) Moving agent pedestrians through space and time. Ann Assoc Am Geogr 102(1):35–66

    Article  Google Scholar 

  • Torrens PM, Benenson I (2005) Geographic automata systems. Int J Geogr Inf Sci 19(4):385–412

    Article  Google Scholar 

  • Torrens PT, O’Sullivan D (2001) Cellular automata and urban simulation: where do we go from here? Environ Plann B Plann Des 28(2):163–168

    Article  Google Scholar 

  • Waldrop MM (1993) Complexity: the emerging science at the edge of order and chaos. Simon & Schuster, New York

    Google Scholar 

  • White R, Engelen G (1993) Cellular automata and fractal urban form: a cellular modeling approach to the evolution of urban land-use patterns. Environ Plan A 25(8):1175–1189

    Article  Google Scholar 

  • Wolfram S (ed) (1986) Theory and applications of cellular automata. World Scientific, New York

    Google Scholar 

  • Wolfram S (2002) A new kind of science. Wolfram Media, Champaign

    Google Scholar 

  • Wu F (1998) SimLand: a prototype to simulate land conversion through the integrated GIS and CA with AHP-derived transition rules. Int J Geogr Inf Sci 12(1):63–82

    Article  Google Scholar 

  • Wu F, Webster CJ (1998) Simulation of land development through the integration of cellular automata and multi-criteria evaluation. Environ Plann B 25(1):103–126

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith C. Clarke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Clarke, K.C. (2018). Cellular Automata and Agent-Based Models. In: Fischer, M., Nijkamp, P. (eds) Handbook of Regional Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36203-3_63-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36203-3_63-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36203-3

  • Online ISBN: 978-3-642-36203-3

  • eBook Packages: Springer Reference Economics and FinanceReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics