Skip to main content


  • 536 Accesses


Aluminum oxide; Al2O3


Alumina is the name used to describe the various oxide compounds formed by aluminum in its trivalent state.

Nanoscale Alumina in the Solid State

There are numerous polymorphs of alumina which could conceivably be described as being polymeric nanomaterials; the many possible arrangements of Al3+-centered octahedra in anhydrous and hydrous forms give rise to a diversity of stable and metastable (“transition”) aluminas. In a technological sense, the most important are the stable α-alumina (corundum) and the metastable γ-alumina. Synthesis of nanosized alumina most often leads to the γ-phase, which is then either sintered to the α-phase or utilized directly [1]. The γ-Al2O3 phase is a defect spinel-type structure, usually cubic [2], although tetragonal distortion is observed in materials obtained by calcination of hydroxide precursors [3]. Aluminum is present in γ-Al2O3in both tetrahedral and octahedral coordination environments, while the...


  • Aluminium Nitride
  • Calcium Sulfoaluminate
  • Expansive Cement
  • AlO6 Octahedra
  • Aluminate Liquor

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.


  1. Levin I, Brandon D (1998) Metastable alumina polymorphs: crystal structures and transition sequences. J Am Ceram Soc 81:1995–2012. doi:10.1111/j.1151-2916.1998.tb02581.x

    CrossRef  CAS  Google Scholar 

  2. Trueba M, Trasatti S (2005) γ-Alumina as a support for catalysts: a review of fundamental aspects. Eur J Inorg Chem 2005:3393–3403. doi:10.1002/ejic.200500348

    CrossRef  Google Scholar 

  3. Paglia G, Buckley CE, Rohl AL, Hart RD, Winter K, Studer AJ, Hunter BA, Hanna JV (2003) Boehmite derived γ-alumina system. 1. Structural evolution with temperature, with the identification and structural determination of a new transition phase, γ‘-alumina. Chem Mater 16:220–236. doi:10.1021/cm034917j

    CrossRef  Google Scholar 

  4. Franks GV, Gan Y (2007) Charging behavior at the alumina–water interface and implications for ceramic processing. J Am Ceram Soc 90:3373–3388. doi:10.1111/j.1551-2916.2007.02013.x

    CrossRef  CAS  Google Scholar 

  5. McHale JM, Auroux A, Perrotta AJ, Navrotsky A (1997) Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 277:788–791. doi:10.1126/science.277.5327.788

    CrossRef  CAS  Google Scholar 

  6. Łodziana Z, Topsøe N-Y, Nørskov JK (2004) A negative surface energy for alumina. Nat Mater 3:289–293. doi:10.1038/nmat1106

    CrossRef  Google Scholar 

  7. Baerlocher C, McCusker LB, Olson DH (2007) Atlas of zeolite structure types, 6th Rev edn. Elsevier/International Zeolite Association, Amsterdam

    Google Scholar 

  8. Tosheva L, Valtchev VP (2005) Nanozeolites: synthesis, crystallization mechanism, and applications. Chem Mater 17:2494–2513. doi:10.1021/cm047908z

    Google Scholar 

  9. Loewenstein W (1954) The distribution of aluminum in the tetrahedra of silicates and aluminates. Am Miner 39:92–96

    CAS  Google Scholar 

  10. Dempsey E, Kühl GH, Olson DH (1969) Variation of lattice parameter with aluminum content in synthetic sodium faujasites. Evidence for ordering of framework ions. J Phys Chem 73:387–390. doi:10.1021/j100722a020

    CrossRef  CAS  Google Scholar 

  11. Depmeier W (1988) Aluminate sodalites–A family with strained structures and ferroic phase transitions. Phys Chem Min 15:419–426. doi:10.1007/BF00311120

    CrossRef  CAS  Google Scholar 

  12. Juenger MCG, Winnefeld F, Provis JL, Ideker J (2001) Advances in alternative cementitious binders. Cem Concr Res 41:1232–1243. doi:10.1016/j.cemconres.2010.11.012

    Google Scholar 

  13. Johansson G (1960) On the crystal structure of some basic aluminum salts. Acta Chem Scand 14:771–773. doi:10.3891/acta.chem.scand.14-0771

    CrossRef  CAS  Google Scholar 

  14. Casey WH (2006) Large aqueous aluminum hydroxide molecules. Chem Rev 106:1–16. doi:10.1021/cr040095d

    CrossRef  CAS  Google Scholar 

  15. Kamb WB (1960) The crystal structure of zunyite. Acta Crystallogr 13:15–24. doi:10.1107/S0365110X60000030

    CrossRef  CAS  Google Scholar 

  16. Parthasarathy N, Buffle J (1985) Study of polymeric aluminium(III) hydroxide solutions for application in waste water treatment. Properties of the polymer and optimal conditions of preparation. Water Res 19:25–36. doi:10.1016/0043-1354(85)90319-7

    CrossRef  CAS  Google Scholar 

  17. Sipos P (2009) The structure of Al(III) in strongly alkaline aluminate solutions – A review. J Mol Liq 146:1–14. doi:10.1016/j.molliq.2009.01.015

    CrossRef  CAS  Google Scholar 

  18. Swaddle TW, Salerno J, Tregloan PA (1994) Aqueous aluminates, silicates, and aluminosilicates. Chem Soc Rev 23:319–325. doi:10.1039/CS9942300319

    CrossRef  CAS  Google Scholar 

  19. McCormick AV, Bell AT (1989) The solution chemistry of zeolite precursors. Catal Rev Sci Eng 31:97–127. doi:10.1080/01614948909351349

    CrossRef  CAS  Google Scholar 

  20. Swaddle TW (2001) Silicate complexes of aluminum(III) in aqueous systems. Coord Chem Rev 219–221:665–686. doi:10.1016/S0010-8545(01)00362-9

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to John L. Provis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Provis, J.L. (2015). Alumina. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36199-9

  • eBook Packages: Springer Reference Chemistry & Mat. ScienceReference Module Physical and Materials Science