Skip to main content

Bio-based Hydrocarbon Polymers

  • Living reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials

Synonyms

Bio-based polyalkenes; Bio-based polyolefins; Biopolyethylene; Biopolyolefins; Biopolypropylene

Definition

Bio-based hydrocarbon polymers can be defined as polymers that consist of hydrogen and carbon atoms and are derived from natural compounds produced by living organisms, mainly plants. Although most hydrocarbon polymers are saturated polyolefins, such as polyethylene, polypropylene, and poly(α-olefins), this entry discusses those and other “hydrocarbon polymers” consisting mostly of hydrogen and carbon atoms, including polydiene, polystyrene, and related polymers, all of which are artificially produced via polymerization of the corresponding alkenes derived from the naturally occurring compounds used as the raw materials.

Introduction

Polymers based on renewable resources have been growing in importance owing to serious environmental concerns such as dwindling fossil resources and global warming [118]. Bio-based polymers originating from plant-produced compounds are...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Nakajima H, Kiura Y (2013) General introduction: overview of the current development of biobased polymers. In: Kimura Y (ed) Bio-based polymers. CMC Publishing, Tokyo, pp 1–23

    Google Scholar 

  2. Belgacem MN, Gandini A (eds) (2005) Monomers, polymers and composites from renewable resources. Elsevier, Oxford

    Google Scholar 

  3. Mthers RT, Meier MAR (eds) (2011) Green polymerization methods. Wiley-VCH, Weinheim

    Google Scholar 

  4. Fuessl A, Yamamoto M, Schneller A (2012) Opportunities in bio-based blocks for polycondensates and vinyl polymers. In: Matyjaszewski K, Möller M (eds) Polymer science: a comprehensive reference, vol 5. Elsevier, Amsterdam, pp 49–70

    Chapter  Google Scholar 

  5. Gandini A (2008) Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41:9491–9504

    Article  CAS  Google Scholar 

  6. Gandini A (2011) The irruption of polymers from renewable resources on the scene of macromolecular science and technology. Green Chem 13:1061–1083

    Article  CAS  Google Scholar 

  7. Mathers RT (2012) How well can renewable resources mimic commodity monomers and polymers? J Polym Sci Part A Polym Chem 50:1–15

    Article  CAS  Google Scholar 

  8. Müllhaupt R (2013) Green polymer chemistry and bio-based plastics: dreams and reality. Macromol Chem Phys 214:159–174

    Article  Google Scholar 

  9. Yao K, Tang C (2013) Controlled polymerization of next-generation renewable monomers and beyond. Macromolecules 46:1689–1712

    Article  CAS  Google Scholar 

  10. Wilbon PA, Chu F, Tang C (2013) Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromol Rapid Commun 34:8–37

    Article  CAS  Google Scholar 

  11. Miller SA (2013) Sustainable polymers: opportunities for the next decade. ACS Macro Lett 2:550–554

    Article  CAS  Google Scholar 

  12. Hillmyer MA, Tolman WB (2014) Aliphatic polyester block polymers: renewable, degradable, and sustainable. Acc Chem Res 47:2390–2396

    Article  CAS  Google Scholar 

  13. Holmberg AL, Reno KH, Wool RP, Epps TH III (2014) Biobased building blocks for the rational design of renewable block polymers. Soft Matter 10:7405–7424

    Article  CAS  Google Scholar 

  14. Bozell JL, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554

    Article  CAS  Google Scholar 

  15. Adkins J, Pugh S, McKenna R, Nielsen DR (2012) Engineering microbial chemical frontiers to produce renewable “biomonomers”. Front Microbiol 3:313

    Article  Google Scholar 

  16. Hernández N, Williams RC, Cochran EW (2014) The battle for the “green” polymer. Different approaches for biopolymer synthesis: bioadvantaged vs. bioreplacement. Org Biomol Chem 12:2834–2849

    Article  Google Scholar 

  17. Satoh K, Kamigaito M (2013) New polymerization methods for bio-based polymers from renewable vinyl monomers. In: Kimura Y (ed) Bio-based polymers. CMC Publishing, Tokyo, pp 95–111

    Google Scholar 

  18. Morschbacker A (2009) Bio-ethanol based ethylene. Polym Rev 49:79–84

    Article  CAS  Google Scholar 

  19. Bomgardner MM (2014) Biobased polymers. Chem Eng News October 27:10–14

    Google Scholar 

  20. Breitmaier E (2006) Terpenes. Wiley-VCH, Weinheim

    Book  Google Scholar 

  21. Bolton JM, Hillmyer MA, Hoye TR (2014) Sustainable thermoplastic elastomers from terpene-derived monomers. ACS Macro Lett 3:717–720

    Article  CAS  Google Scholar 

  22. Satoh K, Sugiyama H, Kamigaito M (2006) Biomass-derived heat-resistant alicyclic hydrocarbon polymers: poly(terpenes) and their hydrogenated derivatives. Green Chem 8:878–882

    Article  CAS  Google Scholar 

  23. Satoh K, Nakahara A, Mukunoki K, Sugiyama H, Saito H, Kamigaito M (2014) Sustainable cycloolefin polymer from pine tree oil for optoelectronic materials: living cationic polymerization of β-pinene and catalytic hydrogenation of high-molecular-weight poly(β-pinene). Polym Chem 5:3222–3230

    Article  CAS  Google Scholar 

  24. Kobayashi S, Lu C, Hoye TR, Hillmyer MA (2009) Controlled polymerization of a cyclic diene prepared from the ring-closing metathesis of a naturally occurring monoterpene. J Am Chem Soc 131:7960–7961

    Article  CAS  Google Scholar 

  25. Mathers RT, Shreve MJ, Meyler E, Damodaran K, Iwig DF, Kelley DJ (2011) Synthesis and preparation of renewable 1,3-cyclohexadiene using metathesis, isomerization, and cascade reactions with late-metal catalysts. Macromol Rapid Commun 32:1338–1342

    Article  CAS  Google Scholar 

  26. Nonoyama Y, Satoh K, Kamigaito M (2014) Renewable β-methylstyrenes for bio-based heat-resistant styrenic copolymers: radical copolymerization enhanced by fluoroalcohol and controlled/living copolymerization by RAFT. Polym Chem 5:3182–3189

    Article  CAS  Google Scholar 

  27. Satoh K, Saitoh S, Kamigaito M (2007) A linear lignin analogue: phenolic alternating copolymers from naturally occurring β-methylstyrene via aqueous-controlled cationic copolymerization. J Am Chem Soc 129:9586–9587

    Article  CAS  Google Scholar 

  28. Satoh K, Matsuda M, Kamigaito M (2010) AAB-sequence living radical chain copolymerization of naturally occurring limonene with maleimide: an end-to-end sequence-regulated copolymer. J Am Chem Soc 132:10003–10005

    Article  CAS  Google Scholar 

  29. Matsuda M, Satoh K, Kamigaito M (2013) 1:2-sequence-regulated radical copolymerization of naturally occurring terpenes with maleimide derivatives in fluorinated alcohol. J Polym Sci Part A Polym Chem 51:1774–1785

    Article  CAS  Google Scholar 

  30. Grau E, Mecking S (2013) Polyterpenes by ring opening metathesis polymerization of caryophyllene and humulene. Green Chem 15:1112–1115

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masami Kamigaito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Kamigaito, M., Satoh, K. (2015). Bio-based Hydrocarbon Polymers. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36199-9_385-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36199-9_385-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36199-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics