Encyclopedia of Polymeric Nanomaterials

Living Edition
| Editors: Shiro Kobayashi, Klaus Müllen

Controlling Wetting Properties of Polymers

Living reference work entry

Later version available View entry history

DOI: https://doi.org/10.1007/978-3-642-36199-9_369-1



Wetting properties of a liquid comprise static and dynamic aspects. In the static case, the contact angle, spreading coefficient, and effective interface potentials are relevant. For dynamics, properties like the wetting or dewetting velocity, influenced by viscosity and viscoelasticity as well as by the hydrodynamic boundary conditions between the liquid and its confining media are important.


Equilibrium and dynamical wetting properties of liquid systems with nanoscopic dimensions on solid substrates are largely determined by the intermolecular interactions [1, 2] between all of a system’s constituent parts. Thus, the control of wetting properties relies on a thorough understanding of the microscopic mechanisms at the root. These interactions can be grouped as short ranged and long ranged. Observed macroscopic or collectivephenomena result from a balance between these interactions at...


Surface Tension Contact Angle Contact Line Finite Layer Lifshitz Theory 
This is a preview of subscription content, log in to check access

References and Further Reading

  1. 1.
    Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Academic Press, BurlingtonGoogle Scholar
  2. 2.
    Parsegian VA (2006) Van der waals forces: a handbook for biologists, chemists, engineers, and physicists. Cambridge University Press, New YorkGoogle Scholar
  3. 3.
    de Gennes PG, Brochard-Wyart F, Quéré D (2003) Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer, New YorkGoogle Scholar
  4. 4.
    Blossey R (2012) Thin liquid films: dewetting and polymer flow. Springer, DordrechtCrossRefGoogle Scholar
  5. 5.
    Bormashenko EY (2013) Wetting of real surfaces. de Gruyter, BerlinCrossRefGoogle Scholar
  6. 6.
    Dietrich S, Rauscher M, Mapiórkowski M (2013) Wetting phenomena on the nanometer scale, Chapter 3. In: Ondarçuhu T, Aimé JP (eds) Nanoscale liquid interfaces: wetting, patterning, and force microscopy at the molecular scale. Pan Stanford, SingaporeGoogle Scholar
  7. 7.
    de Gennes PG (1985) Wetting: statics and dynamics. Rev Mod Phys 57:827CrossRefGoogle Scholar
  8. 8.
    Oron A, Davis SH, Bankoff SG (1997) Long-scale evolution of thin liquid films. Rev Mod Phys 69:931CrossRefGoogle Scholar
  9. 9.
    Craster MV, Matar OK (2009) Dynamics and stability of thin liquid films. Rev Mod Phys 81:1131CrossRefGoogle Scholar
  10. 10.
    Dzyaloshinskii IE, Lifshitz EM, Pitaevskii LP (1961) The general theory of van der Waals forces. Advances in Physics 10:165CrossRefGoogle Scholar
  11. 11.
    Butt H-J, Graf K, Kappl M (2005) Physics and chemistry of interfaces. Wiley-VCH, WeinheimGoogle Scholar
  12. 12.
    Jacobs K, Seemann R, Herminghaus S (2008) Stability and dewetting of thin liquid films, Chapter 10. In: Tsui OKC, Russell TP (eds) Polymer thin films. World Scientific, SingaporeGoogle Scholar
  13. 13.
    Schreiber F (2000) Structure and growth of self-assembling monolayers. Prog Surf Sci 65:151CrossRefGoogle Scholar
  14. 14.
    Good RJ (1992) Contact angle, wetting and adhesion: a critical review. J Adhes Sci Technol 6:1269CrossRefGoogle Scholar
  15. 15.
    Seemann R, Herminghaus S, Neto C, Schlagowski S, Podzimek D, Konrad R, Mantz H, Jacobs K (2005) Dynamics and structure formation in thin polymer melt films. J Phys Condens Matter 17:S267CrossRefGoogle Scholar
  16. 16.
    Lauga E, Brenner MP, Stone HA (2007) Microfluidics: the no-slip boundary condition, Chapter 19. In: Handbook of experimental fluid mechanics. Springer, New YorkGoogle Scholar
  17. 17.
    Shikhmurzaev YD (2008) Capillary flows with forming interfaces. Chapman & Hall/CRC, Boca RatonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Experimental PhysicsSaarland UniversitySaarbrückenGermany