Skip to main content

Bioactive Layer-By-Layer Films to Stimulate Cell Growth and Differentiation

  • 343 Accesses

Synonyms

Layer-by-layer (LbL); Polyelectrolyte multilayers

Definitions

Polypeptide: a polypeptide is an unbranched peptide chain made of less than 50 amino acids. A covalent peptide bond is formed when the carboxylic group of one amino acid reacts with the amino group of another peptide. For instance, poly(l-lysine) (PLL) is a polymer of lysine.

Polysaccharide: it is a polymer of monosaccharide units bound together by glycosidic linkages. The monosaccharide unit is a simple sugar unit made of carbon, oxygen, and hydrogen. In the body, major polysaccharides are hyaluronan (HA), chondroitin sulfate (CSA), and heparan sulfates.

Extracellular matrix (ECM): it is the matrix surrounding the cells and made of large proteins such as fibronectin, collagen, or laminin and of polysaccharides. The exact composition of the ECM depends on the type of tissue.

Growth factor: it is a protein capable of stimulating cellular growth, proliferation, and differentiation.

Introduction

Controlling the bulk...

Keywords

  • Chondroitin Sulfate
  • Multilayer Film
  • Bioactive Molecule
  • Spatial Confinement
  • Allylamine Hydrochloride

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Castner DG, Ratner BD (2002) Biomedical surface science: foundations to frontiers. Surf Sci 500:28–60

    CAS  CrossRef  Google Scholar 

  2. Hubbell JA (1999) Bioactive biomaterials. Curr Opin Biotechnol 10:123–129

    CAS  CrossRef  Google Scholar 

  3. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    CAS  CrossRef  Google Scholar 

  4. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    CAS  CrossRef  Google Scholar 

  5. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    CAS  CrossRef  Google Scholar 

  6. Hudalla GA, Murphy WL (2011) Biomaterials that regulate growth factor activity via bioinspired interactions. Adv Funct Mater 21:1754–1768

    CAS  CrossRef  Google Scholar 

  7. Kwok CS, Mourad PD, Crum LA, Ratner BD (2000) Surface modification of polymers with self-assembled molecular structures: multitechnique surface characterization. Biomacromolecules 1:139–148

    CAS  CrossRef  Google Scholar 

  8. Tang Z, Wang Y, Podsiadlo P, Kotov NA (2006) Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv Mater 18:3203–3224

    CAS  CrossRef  Google Scholar 

  9. Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210–211:831–835

    CrossRef  Google Scholar 

  10. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237

    CAS  CrossRef  Google Scholar 

  11. Chluba J, Voegel JC, Decher G, Erbacher P, Schaaf P, Ogier J (2001) Peptide hormone covalently bound to polyelectrolytes and embedded into multilayer architectures conserving full biological activity. Biomacromolecules 2:800–805

    CAS  CrossRef  Google Scholar 

  12. Picart C, Lavalle P, Hubert P, Cuisinier FJG, Decher G, Schaaf P et al (2001) Buildup mechanism for poly(l-lysine)/hyaluronic acid films onto a solid surface. Langmuir 17:7414–7424

    CAS  CrossRef  Google Scholar 

  13. Picart C, Mutterer J, Richert L, Luo Y, Prestwich GD, Schaaf P et al (2002) Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers. Proc Natl Acad Sci U S A 99:12531–12535

    CAS  CrossRef  Google Scholar 

  14. Zhu H, Ji J, Shen J (2004) Construction of multilayer coating onto poly-(dl-lactide) to promote cytocompatibility. Biomaterials 25:109–117

    CAS  CrossRef  Google Scholar 

  15. Boudou T, Crouzier T, Ren K, Blin G, Picart C (2010) Multiple functionalities of polyelectrolyte multilayer films: new biomedical applications. Adv Mater 22:441–467

    CAS  CrossRef  Google Scholar 

  16. Macdonald ML, Samuel RE, Shah NJ, Padera RF, Beben YM, Hammond PT (2011) Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants. Biomaterials 32:1446–1453

    CAS  CrossRef  Google Scholar 

  17. Crouzier T, Sailhan F, Becquart P, Guillot R, Logeart-Avramoglou D, Picart C (2011) The performance of BMP-2 loaded TCP/HAP porous ceramics with a polyelectrolyte multilayer film coating. Biomaterials 32:7543–7554

    CAS  CrossRef  Google Scholar 

  18. Remy M, Durand M, Menu P, Voegel JC, Ponsot JF, Berard X et al (2013) Interspecies differences with in vitro and in vivo models of vascular tissue engineering. Biomaterials 34:9842–9852

    CAS  CrossRef  Google Scholar 

  19. Hersel U, Dahmen C, Kessler H (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415

    CAS  CrossRef  Google Scholar 

  20. Lynn DM (2007) Peeling back the layers: controlled erosion and triggered disassembly of multilayered polyelectrolyte thin films. Adv Mater 19:4118–4130

    CAS  CrossRef  Google Scholar 

  21. Zelikin AN (2010) Drug releasing polymer thin films: new era of surface-mediated drug delivery. ACS Nano 4:2494–2509

    CAS  CrossRef  Google Scholar 

  22. Pavlukhina S, Sukhishvili S (2011) Polymer assemblies for controlled delivery of bioactive molecules from surfaces. Adv Drug Deliv Rev 63:822–836

    CAS  CrossRef  Google Scholar 

  23. Gribova V, Auzely-Velty R, Picart C (2012) Polyelectrolyte multilayer assemblies on materials surfaces: from cell adhesion to tissue engineering. Chem Mater 24:854–869

    CAS  CrossRef  Google Scholar 

  24. Ma L, Zhou J, Gao C, Shen J (2007) Incorporation of basic fibroblast growth factor by a layer-by-layer assembly technique to produce bioactive substrates. J Biomed Mat Res Part B 83:285–292

    CrossRef  Google Scholar 

  25. Tezcaner A, Hicks D, Boulmedais F, Sahel J, Schaaf P, Voegel JC et al (2006) Polyelectrolyte multilayer films as substrates for photoreceptor cells. Biomacromolecules 7:86–94

    CAS  CrossRef  Google Scholar 

  26. Macdonald ML, Rodriguez NM, Shah NJ, Hammond PT (2010) Characterization of tunable FGF-2 releasing polyelectrolyte multilayers. Biomacromolecules 11:2053–2059

    CAS  CrossRef  Google Scholar 

  27. De Cock LJ, De Koker S, De Vos F, Vervaet C, Remon JP, De Geest BG (2010) Layer-by-layer incorporation of growth factors in decellularized aortic heart valve leaflets. Biomacromolecules 11:1002–1008

    CrossRef  Google Scholar 

  28. Crouzier T, Ren K, Nicolas C, Roy C, Picart C (2009) Layer-by-layer films as a biomimetic reservoir for rhBMP-2 delivery: controlled differentiation of myoblasts to osteoblasts. Small 5:598–608

    CAS  CrossRef  Google Scholar 

  29. Guillot R, Gilde F, Becquart P, Sailhan F, Lapeyrere A, Logeart-Avramoglou D et al (2013) The stability of BMP loaded polyelectrolyte multilayer coatings on titanium. Biomaterials 34:5737–5746

    CAS  CrossRef  Google Scholar 

  30. Crouzier T, Fourel L, Boudou T, Albiges-Rizo C, Picart C (2011) Presentation of BMP-2 from a soft biopolymeric film unveils its activity on cell adhesion and migration. Adv Mater 23:H111–H118

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Picart, C. (2015). Bioactive Layer-By-Layer Films to Stimulate Cell Growth and Differentiation. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36199-9_355-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36199-9_355-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36199-9

  • eBook Packages: Springer Reference Chemistry & Mat. ScienceReference Module Physical and Materials Science