Skip to main content

Fullerene-Based FETs

  • Living reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials
  • 384 Accesses

Synonyms

Fullerene transistors; Thin film transistors

Definition

Fullerene-based field-effect transistors are a certain kind of electronic switches in which fullerenes or fullerene derivatives serve as active semiconductor material.

Introduction

Fullerenes and especially C60,their most famous, most stable, and most abundant representative, offer intriguing electronic properties. A very high electron affinity, and the ability to accept up to six electrons, makes them appealing materials for application as n-type semiconductor. This entry focuses on a certain application for fullerenes, as semiconducting material in field-effect transistors (FETs). Starting with a short theoretical part in which the general setup and working principle of FETs will be discussed, the entry will give an overview about methods on how to incorporate fullerenes into transistor devices and results which were obtained in those systems. Looking at different aspects, from chemically unmodified fullerenes to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Zaumseil J, Sirringhaus H (2007) Electron and ambipolar transport in organic field-effect transistors. Chem Rev 107:1296–1323. doi:10.1021/cr0501543

    Article  CAS  Google Scholar 

  2. Klauk H (2010) Organic thin-film transistors. Chem Soc Rev 39:2643. doi:10.1039/b909902f

    Article  CAS  Google Scholar 

  3. Haddon RC, Perel AS, Morris RC, Palstra TTM, Hebard AF, Fleming RM (1995) C60 thin film transistors. Appl Phys Lett 67:121–123. doi:10.1063/1.115503

    Article  CAS  Google Scholar 

  4. Anthony JE, Facchetti A, Heeney M, Marder SR, Zhan XW (2010) n-type organic semiconductors in organic electronics. Adv Mater 22:3876–3892. doi:10.1002/adma.200903628

    Article  CAS  Google Scholar 

  5. Anthopoulos TD, Singh B, Marjanovic N, Sariciftci NS, Montaigne Ramil A, Sitter H, Cölle M, de Leeuw DM (2006) High performance n-channel organic field-effect transistors and ring oscillators based on C60 fullerene films. Appl Phys Lett 89:213504. doi:10.1063/1.2387892

    Article  Google Scholar 

  6. Briseno AL, Mannsfeld SCB, Ling MM, Liu S, Tseng RJ, Reese C, Roberts ME, Yang Y, Wudl F, Bao Z (2006) Patterning organic single-crystal transistor arrays. Nature 444:913–917. doi:10.1038/nature05427

    Article  CAS  Google Scholar 

  7. Semenov KN, Charykov NA, Keskinov VA, Piartman AK, Blokhin AA, Kopyrin AA (2009) Solubility of light fullerenes in organic solvents. J Chem Eng Data 55:13–36. doi:10.1021/je900296s

    Article  Google Scholar 

  8. Wang L, Liu B, Yu S, Yao M, Liu D, Hou Y, Cui T, Zou G, Sundqvist B, You H, Zhang D, Ma D (2006) Highly enhanced luminescence from single-crystalline C60 · 1 m-xylene nanorods. Chem Mater 18:4190–4194. doi:10.1021/cm060997q

    Article  CAS  Google Scholar 

  9. Li H, Tee BCK, Cha JJ, Cui Y, Chung JW, Lee SY, Bao Z (2012) High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals. J Am Chem Soc 134:2760–2765. doi:10.1021/ja210430b

    Article  CAS  Google Scholar 

  10. Hummelen JC, Knight BW, Lepeq F, Wudl F, Yao J, Wilkins CL (1995) Preparation and characterization of fulleroid and methanofullerene derivatives. J Org Chem 60:532–538. doi:10.1021/jo00108a012

    Article  CAS  Google Scholar 

  11. Waldauf C, Schilinsky P, Perisutti M, Hauch J, Brabec CJ (2003) Solution-processed organic n-type thin-film transistors. Adv Mater 15:2084–2088. doi:10.1002/adma.200305623

    Article  CAS  Google Scholar 

  12. Anthopoulos TD, Tanase C, Setayesh S, Meijer EJ, Hummelen JC, Blom PWM, De Leeuw DM (2004) Ambipolar organic field-effect transistors based on a solution-processed methanofullerene. Adv Mater 16:2174–2179. doi:10.1002/adma.200400309

    Article  CAS  Google Scholar 

  13. Wöbkenberg PH, Bradley DDC, Kronholm D, Hummelen JC, de Leeuw DM, Cölle M, Anthopoulos TD (2008) High mobility n-channel organic field-effect transistors based on soluble C60 and C70 fullerene derivatives. Synth Met 158:468–472. doi:10.1016/j.synthmet.2008.03.016

    Article  Google Scholar 

  14. Chikamatsu M, Itakura A, Yoshida Y, Azumi R, Yase K (2008) High-performance n-type organic thin-film transistors based on solution-processable perfluoroalkyl-substituted C60 derivatives. Chem Mater 20:7365–7367. doi:10.1021/cm802577u

    Article  CAS  Google Scholar 

  15. Stubhan T, Salinas M, Ebel A, Krebs FC, Hirsch A, Halik M, Brabec CJ (2012) Increasing the fill factor of inverted P3HT:PCBM solar cells through surface modification of al-doped ZnO via phosphonic acid-anchored C60 SAMs. Adv Energ Mater 2:532–535. doi:10.1002/aenm.201100668

    Article  CAS  Google Scholar 

  16. Novak M, Ebel A, Meyer-Friedrichsen T, Jedaa A, Vieweg BF, Yang G, Voitchovsky K, Stellacci F, Spiecker E, Hirsch A, Halik M (2011) Low-voltage p- and n-type organic self-assembled monolayer field effect transistors. Nano Lett 11:156–159. doi:10.1021/nl103200r

    Article  CAS  Google Scholar 

  17. Jaeger CM, Schmaltz T, Novak M, Khassanov A, Vorobiev A, Hennemann M, Krause A, Dietrich H, Zahn D, Hirsch A, Halik M, Clark T (2013) Improving the charge transport in self-assembled monolayer field-effect transistors – from theory to devices. J Am Chem Soc 135:4893–4900. doi:10.1021/ja401320n

    Article  CAS  Google Scholar 

  18. Park H, Park J, Lim AKL, Anderson EH, Alivisatos AP, McEuen PL (2000) Nanomechanical oscillations in a single-C60 transistor. Nature 407:57–60. doi:10.1038/35024031

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Halik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Schmaltz, T., Halik, M. (2014). Fullerene-Based FETs. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36199-9_331-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36199-9_331-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36199-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics