Skip to main content

Biocomposites

Synonyms

Biomaterials; Inorganic/organic hybrid materials

Definition

Biocomposites are defined as biocompatible and/or eco-friendly composites. They consist of a large variety of organic and/or inorganic components, such as natural and synthetic polymers, polysaccharides, proteins, sugars, ceramics, metals, and nanocarbons. Biocomposites are present in various forms, such as films, membranes, moldings, coatings, particles, fibers, and foams. In addition to the studies aimed at improving basic mechanical properties and functionalities of the materials, a large number of studies have been conducted to develop eco-friendly composite and/or biomedical materials for use in the fields of sensors, tissue engineering, implants, and scaffolds.

Introduction

Biocomposite is a category of biocompatible and/or eco-friendly (i.e., green) composites in a broad sense [1, 2]. High-performance biocomposites are often used in contact with living tissues [3]. A wide variety of components, such as...

Keywords

  • Silk Fibroin
  • Lower Critical Solution Temperature
  • Cell Sheet
  • Nanocomposite Hydrogel
  • Normal Human Dermal Fibroblast

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364

    CrossRef  CAS  Google Scholar 

  2. Faruk O, Blendzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596

    CrossRef  CAS  Google Scholar 

  3. Tjong SC (2009) Advances in biomedical sciences and engineering. Bentham Science, Sharjah

    Google Scholar 

  4. Mishra S, Mohanty AK, Drzal LT, Misra M, Parja S, Nayak SK, Tripathy SS (2003) Studies on mechanical performance of Biofibre/Glass reinforced polyester hybrid composites. Composite Sci Technol 63:1377–1385

    CrossRef  CAS  Google Scholar 

  5. Averous L, Boquillon N (2004) Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydr Polym 56:111–122

    CrossRef  CAS  Google Scholar 

  6. Lee SH, Wang S, Part A (2006) Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Appl Sci Manuf 37:80–91

    CrossRef  CAS  Google Scholar 

  7. Thomas V, Dean DR, Jose MV, Mathew B, Chowdhury S, Vohra YK (2007) Nanostructured biocomposite scaffolds based on collagen coelectrospun with nanohydroxyapatite. Biomacromolecules 8:631–637

    CrossRef  CAS  Google Scholar 

  8. Kandiah K, Muthusamy P, Mohan S, Venkatachalam R (2014) TiO2–graphene nanocomposites for enhanced osteocalcin induction. Mater Sci Eng C 38:252–262

    CrossRef  CAS  Google Scholar 

  9. Günister E, Pestreli D, Ünlü CH, Atici O, Güngör N (2007) Synthesis and characterization of Chitosan-MMT biocomposite systems. Carbohydr Polym 67:358–365

    CrossRef  Google Scholar 

  10. Bai S, Shen X (2012) Graphene-inorganic nanocomposites (Review). RSC Adv 2(1):64–98

    CrossRef  CAS  Google Scholar 

  11. Zhang H, Chen Z (2010) Fabrication and characterization of electrospun PLGA/MWNTs/ Hydroxyapatite biocomposite scaffolds for bone tissue engineering. J Bioact Compat Polym 25:241–259

    CrossRef  Google Scholar 

  12. Zhou K, Zhu Y, Yang X, Luo J, Li C, Luan S (2010) A novel hydrogen peroxide biosensor based on AugrapheneHRPchitosan biocomposites. Electrochim Acta 55:3055–3060

    CrossRef  CAS  Google Scholar 

  13. Sun X, Li F, Shen G, Huang J, Wang X (2014) Aptasensor based on the synergistic contributions of chitosan-gold nanoparticles, graphene-gold nanoparticles and multi-walled carbon canotubes-cobalt phthalocyanine nanocomposites for kanamycin detection. Analyst 139:299–308

    CrossRef  CAS  Google Scholar 

  14. Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14:1120–1124

    CrossRef  CAS  Google Scholar 

  15. Haraguchi K, Takehisa T, Fan S (2002) Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay. Macromolecules 35:10162–10171

    CrossRef  CAS  Google Scholar 

  16. Haraguchi K, Li H-J (2005) Control of the Coil-to-Globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels. Angew Chem Int Ed 44:6500–6504

    CrossRef  CAS  Google Scholar 

  17. Haraguchi K (2011) Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures. Polym J 43:223–241

    CrossRef  CAS  Google Scholar 

  18. Haraguchi K, Ebato M, Takehisa T (2006) Polymer-clay nanocomposites exhibiting abnormal necking phenomena accompanied by extremely large reversible elongations and excellent transparency. Adv Mater 18:2250–2254

    CrossRef  CAS  Google Scholar 

  19. Haraguchi K, Li H-J, Matsuda K, Takehisa T, Elliott E (2005) Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-Clay nanocomposite hydrogels. Macromolecules 38:3482–3490

    CrossRef  CAS  Google Scholar 

  20. Haraguchi K, Takada T (2014) Polymer-clay nanocomposite microspheres and their thermosensitive characteristics. Macromol Chem Phys 215:295–305

    CrossRef  CAS  Google Scholar 

  21. Haraguchi K, Takehisa T, Ebato M (2006) Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels. Biomacromolecules 7:3267–3275

    CrossRef  CAS  Google Scholar 

  22. Haraguchi K, Takada T (2010) Synthesis and characteristics of nanocomposite gels prepared by in situ photopolymerization in an aqueous system. Macromolecules 43:4294–4299

    CrossRef  CAS  Google Scholar 

  23. Haraguchi K, Masatoshi S, Kotobuki N, Murata KJ (2011) Thermoresponsible cell adhesion/detachment on transparent nanocomposite films consisting of poly(2-methoxyethyl acrylate) and clay. J Biomater Sci 22:2389–2406

    CrossRef  CAS  Google Scholar 

  24. Haraguchi K, Murata K, Takehisa T (2012) Stimuli-responsive nanocomposite gels and soft nanocomposites consisting of inorganic clays and copolymers with different chemical affinities. Macromolecules 45:385–391

    CrossRef  CAS  Google Scholar 

  25. Kotobuki N, Murata K, Haraguchi KJ (2013) Proliferation and harvest of human mesenchymal stem cells using new thermoresponsive nanocomposite gels. J Biomed Mater Res A 101A:537–546

    CrossRef  CAS  Google Scholar 

  26. NEDO (2009) Report P05323, Tokyo, Japan

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazutoshi Haraguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Haraguchi, K. (2014). Biocomposites. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36199-9_316-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36199-9_316-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36199-9

  • eBook Packages: Springer Reference Chemistry & Mat. ScienceReference Module Physical and Materials Science