Skip to main content

Blood-Compatible Materials

  • Living reference work entry
  • First Online:
Encyclopedia of Polymeric Nanomaterials

Synonyms

Antithrombogenic materials; Nonthrombogenic materials; Thrombo-resistant materials

Definition

Blood-Compatible Materials

Materials used for making medical devices that remain in contact with blood for a long period, usually more than 6 weeks, without significant antithrombogenic therapy.

Definition of Blood Compatibility

In a normal blood vessel, blood does not coagulate because the surface of the vessel is covered with endothelial cells. These cells have several types of biological molecules to prevent the coagulation of blood. In artificial blood vessels currently used, the surface response of pseudointima formation by endothelial cells is successful only if the artificial blood vessel is over 6 mm in diameter [1]. This blood compatibility is not due to the material’s surface per se but due to the surface of the endothelial cells. Generally, when blood encounters an artificial material, the coagulation system of blood is immediately activated. Thus, blood compatibility is...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. McGuigan AP, Sefton MV (2007) The influence of biomaterials on endothelial cell thrombogenicity. Biomaterials 28:2547–2571. doi:10.1016/j.biomaterials.2007.01.039

    Article  CAS  Google Scholar 

  2. Hanson SR, Ratner BD (2012) Evaluation of blood-materials interactions. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine, 3rd edn. Academic, Oxford, pp 367–379

    Google Scholar 

  3. Gorbet MB, Sefton MV (2004) Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 25:5681–5703

    Article  CAS  Google Scholar 

  4. Hanson SR (2008) Blood-materials interactions. In: Encyclopedia of biomaterials and biomedical engineering. Informa Healthcare, New York, pp 367–377

    Google Scholar 

  5. Hobett T, Brash JL, Norde W (eds) (2013) Proteins at interfaces III state of the art ACS symposium series, vol 1120. American Chemical Society, Washington, DC

    Google Scholar 

  6. Hirsh SL, Mckenzie DR, Nosworthy et al (2013) The Vroman effect: competitive protein exchange with dynamic multilayer protein aggregates. Colloid Surf B Biointerface 103:395–404. dx.doi.org/10.1016/j.colsurfb.2012.10.039

    Google Scholar 

  7. Kwak D, Wu Y, Horbett A (2005) Fibrinogen and von Willebrand’s factor adsorption are both required for platelet adhesion from sheared suspensions to polyethylene preadsorbed with blood plasma. J Biomed Mater Res 74A:69–83. doi:10.1002/jbm.a.30365

    Article  CAS  Google Scholar 

  8. Lyman DJ, Metcalf LC, Albo D Jr, Richard KF, Lamb J (1974) The effect of chemical structure and surface properties of synthetic polymers on the coagulation of blood. III. In vivo adsorption of proteins on polymer surfaces. Trans Am Soc Artif Intern Organs 20B:474–478

    Google Scholar 

  9. Rimmer S (ed) (2011) Biomedical hydrogels: biochemistry, manufacture and medical applications. Woodhead Publishing, Cambridge

    Google Scholar 

  10. Sakurai Y, Akaike T, Kataoka K, Okano T (1980) Interfacial phenomena in biomaterials chemistry. In: Goldberg EP, Nakajima A (eds) Biomedical polymers: polymeric materials and pharmaceuticals for biomedical use. Academic, New York, pp 335–370

    Google Scholar 

  11. Lamba NMK, Woodhouse KA, Cooper SL (eds) (1998) Polyurethanes in biomedical applications. CRC press, Boca Raton

    Google Scholar 

  12. Harris JM (ed) (1992) Poly(ethylene glycol) chemistry: biotechnical and biomedical Applications. Plenum Press, New York

    Google Scholar 

  13. Nojiri C, Okano T, Jacobs HA et al (1990) Blood compatibility of PEO grafted polyurethane and HEMA/styrene block copolymer surfaces. J Biomed Mater Res 24:1151–1171. doi:10.1002/jbm.820240903

    Article  CAS  Google Scholar 

  14. Kim SW, Jacobs H (1996) Design of nonthrombogenic polymer surfaces for blood-contacting medical devices. Blood Purif 14:357–372

    Article  CAS  Google Scholar 

  15. Cholakis CH, Sefton MV (1989) In vitro platelet interactions with a heparin-poly(vinyl alcohol) hydrogel. J Biomed Mater Res 23:399–415. doi:10.1002/jbm.820230403

    Article  CAS  Google Scholar 

  16. Frost MC, Reynolds MM, Meyerhoff ME (2005) Polymers incorporating nitric oxide releasing/generating substances for improved biocompatibility of blood-contacting medical devices. Biomaterials 26:1685–1693. dx.doi.org/10.1016/j.biomaterials.2004.06.006

    Google Scholar 

  17. Yoshitomi T, Hirayama A, Nagasaki Y (2011) The ROS scavenging and renal protective effects of pH-responsive nitroxide radical-containing nanoparticles. Biomaterials 32:8021–8028. doi:10.1016/j.biomaterials.2011.07.014

    Article  CAS  Google Scholar 

  18. Iwasaki Y, Ishihara K (2012) Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces. Sci Technol Adv Mater 13:064101(14 pp). doi:10.1088/1468-6996/13/6/064101

    Google Scholar 

  19. Ishihara K, Fukazawa K (2014) 2-Methacryloyloxyethyl phosphorylcholine polymers and their biomedical applications. In: Phosphorus-based polymers: From synthesis to applications. RSC, Cambridge, pp 68-96. doi: 10.1039/9781782624523-00068

    Google Scholar 

  20. Inoue Y, Nakanishi T, Ishihara K (2013) Elastic repulsion from polymer brush layers exhibiting high protein repellency. Langmuir 29:10752–10758. doi:10.1021/la4021492

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiko Ishihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Ishihara, K. (2014). Blood-Compatible Materials. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36199-9_236-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36199-9_236-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36199-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics