Skip to main content

Antenna Effect in Dendrimers

  • 578 Accesses

Synonyms

Energy-transfer cascade; Light-harvesting

Definition

The antenna effect occurs in a dendrimer when many chromophoric units absorb the incident light and then channel the excitation energy to a common acceptor component.

Introduction

Light-harvesting antennas are not the invention of mankind. In the course of evolution, nature has succeeded in building up antenna systems that collect an enormous amount of solar energy and redirect it as electronic excitation energy to reaction centers where subsequent conversion into redox chemical energy takes place [1]. For artificial systems, the term “antenna effect” was first used [2] to discuss the case of strongly emitting but weakly absorbing lanthanide ions whose luminescence can be sensitized by excitation of strongly absorbing ligands.

In the last 15 years, much attention has been devoted to the design and synthesis of molecular or supramolecular species capable of playing the role of antennas in artificial systems for the...

Keywords

  • Solar Energy Conversion
  • Component Unit
  • Zinc Porphyrin
  • Antenna Effect
  • Exciplex Formation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Blankenship RE (2002) Molecular mechanism of photosynthesis. Blackwell Science, Oxford

    CrossRef  Google Scholar 

  2. Alpha B, Balzani V, Lehn JM, Perathoner S, Sabbatini N (1987) Luminescence probe: the Eu3+- and Tb3+-cryptates of polypyridine macrobicyclic ligands. Angew Chem Int Ed 26:1266–1267

    CrossRef  Google Scholar 

  3. Balzani V, Ceroni P, Maestri M, Vicinelli V (2003) Light-harvesting dendrimers. Curr Opin Chem Biol 7:657–665

    CrossRef  CAS  Google Scholar 

  4. Li WS, Aida T (2009) Dendrimer porphyrins and phthalocyanines. Chem Rev 109:6047–6076

    CrossRef  CAS  Google Scholar 

  5. Balzani V, Bergamini G, Ceroni P, Marchi E (2011) Designing light harvesting antennas by luminescent dendrimers. New J Chem 35:1944–1954

    CrossRef  CAS  Google Scholar 

  6. Campagna S, Ceroni P, Puntoriero F (eds) (2012) Designing dendrimers. Wiley, Hoboken

    Google Scholar 

  7. Caminade AM, Turrin CO, Laurent R, Ouali A, Delavaux-Nicot B (2011) Dendrimer. Towards catalytic, material and biomedical uses. Wiley, Chichester

    Google Scholar 

  8. Piotrowiak P (2001) Relationship between electron and electronic excitation transfer. In: Balzani V (ed) Electron transfer in chemistry. Principles, theories, methods, and techniques, part 1, vol 1. Wiley-VCH, Weinheim, pp 215–237

    CrossRef  Google Scholar 

  9. Vögtle F, Gestermann S, Kauffmann C, Ceroni P, Vicinelli V, Balzani V (2000) Coordination of Co2+ ions in the interior of poly(propylene amine) dendrimers containing fluorescent dansyl units in the periphery. J Am Chem Soc 122:10398–10404

    CrossRef  CAS  Google Scholar 

  10. Wong WWH, Ma CQ, Pisula W, Mavrinskiy A, Feng X, Seyler H, Jones DJ, Müllen K, Bäuerle P, Holmes AB (2011) Fluorenyl hexa-peri-hexabenzocoronene-dendritic oligothiophene hybrid materials: synthesis, photophysical properties, self-association behaviour and device performance. Chem Eur J 17:5549–5560

    CrossRef  CAS  Google Scholar 

  11. Hecht S, Fréchet JMJ (2001) Dendritic encapsulation of function: applying nature’s site isolation principle from biomimetics to material science. Angew Chem Int Ed 40:74–91

    CrossRef  CAS  Google Scholar 

  12. Bozdemir OA, Erbas-Cakmak S, Ekiz OO, Dana A, Akkaya EU (2011) Towards unimolecular luminescent solar concentrators: Bodipy-based dendritic energy-Transfer cascade with panchromatic absorption and monochromatized emission. Angew Chem Int Ed 50:10907–10912

    CrossRef  CAS  Google Scholar 

  13. Ceroni P (2011) Energy up-conversion by low-power excitation: new applications of an old concept. Chem Eur J 17:9560–9564

    CrossRef  CAS  Google Scholar 

  14. Kuroda DG, Singh CP, Peng Z, Kleiman VD (2009) Mapping excited-state dynamics by coherent control of a dendrimer’s photoemission efficiency. Science 326:263–267

    CrossRef  CAS  Google Scholar 

  15. Hahn U, Gorka M, Vögtle F, Vicinelli V, Ceroni P, Maestri M, Balzani V (2002) Light-harvesting dendrimers: efficient intra- and intermolecular energy-transfer processes in a species containing 65 chromophoric groups of four different types. Angew Chem Int Ed 41:3595–3598

    CrossRef  CAS  Google Scholar 

  16. Kuciauskas D, Liddell PA, Lin S, Johnson TE, Weghorn SJ, Lindsey JS, Moore AL, Moore TA, Gust D (1999) An artificial photosynthetic antenna-reaction center complex. J Am Chem Soc 121:8604–8614

    CrossRef  CAS  Google Scholar 

  17. Puntoriero F, Nastasi F, Cavazzini M, Quici S, Campagna S (2007) Coupling synthetic antenna and electron donor species: a tetranuclear mixed-metal Os(II)–Ru(II) dendrimer containing six phenothiazine donor subunits at the periphery. Coord Chem Rev 251:536–545

    CrossRef  CAS  Google Scholar 

  18. Frischmann PD, Mahata K, Würthner F (2013) Powering the future of molecular artificial photosynthesis by light-harvesting metallosupramolecular dye assemblies. Chem Soc Rev 42:1847–1870

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Ceroni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Ceroni, P., Bergamini, G. (2013). Antenna Effect in Dendrimers. In: Kobayashi, S., Müllen, K. (eds) Encyclopedia of Polymeric Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36199-9_16-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36199-9_16-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36199-9

  • eBook Packages: Springer Reference Chemistry & Mat. ScienceReference Module Physical and Materials Science