Encyclopedia of Earthquake Engineering

Living Edition
| Editors: Michael Beer, Ioannis A. Kougioumtzoglou, Edoardo Patelli, Ivan Siu-Kui Au

Electrochemical Seismometers of Linear and Angular Motion

  • Vadim M. Agafonov
  • Alexander V. Neeshpapa
  • Anna S. Shabalina
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-36197-5_403-1

Synonyms

Introduction

Traditionally seismic sensors use a mechanical system with moving solid-state inertial mass in combination with either velocity or displacement transducers. The latter convert mechanical motion of the inertial mass into the electrical signal. An alternative approach based on employment of liquid inertial mass and four-electrode electrochemical transducer with potential difference applied between the electrodes as a converter of the liquid motion into electrical signal was developed in recent years (Huang et al. 2013; Agafonov et al. 2014). Such devices are known as MET (molecular electronic transfer) or electrochemical sensors. Basically, the operation of the MET sensors uses the sensitivity of an interelectrode current in the electrochemical cell to the movement of a liquid electrolyte relative to the electrodes fixed on the sensor housing....

This is a preview of subscription content, log in to check access.

References

  1. Agafonov VM, Krishtop VG (2004) Diffusion sensor of mechanical signals: frequency response at high frequencies. Russ J Electrochem 40:537–541CrossRefGoogle Scholar
  2. Agafonov VM, Egorov EV, Zaitsev DL (2010) Molecular electronic linear accelerometers. Preliminary test results. Gyroscopy Navigation 1(4):246–251CrossRefGoogle Scholar
  3. Agafonov VM, Egorov IV, Shabalina AS (2014) Operating principles and technical characteristics of a small-sized molecular–electronic seismic sensor with negative feedback. Seismic Instrum 50(1):1–8CrossRefGoogle Scholar
  4. Bernauer M, Fichtner A, Igel H (2012a) Measurements of translation, rotation and strain: new approaches to seismic processing and inversion. J Seismol 16(4):669–681CrossRefGoogle Scholar
  5. Bernauer F, Wassermann J, Igel H (2012b) Rotational sensors—a comparison of different sensor types. J Seismol 16:595–602. doi:10.1007/s10950-012-9286-7CrossRefGoogle Scholar
  6. Collins JL, Richie WC, English GE (1964) Solion infrasonic microphone. J Acoust Soc Am 36:1283–1287CrossRefGoogle Scholar
  7. Huang H, Agafonov V, Yu H (2013) Molecular electric transducers as motion sensors: a review. Sensors 13:4581–4597. doi:10.3390/s130404581CrossRefGoogle Scholar
  8. Hurd RM, Lane RN (1957) Principles of very low power electrochemical control devices. J Electrochem Soc 104:727–730CrossRefGoogle Scholar
  9. Kapustian N, Antonovskaya G, Agafonov V, Neumoin K, Safonov M (2013) Seismic monitoring of linear and rotational oscillations of the multistory buildings in Moscow. Geotechnical Geological Earthquake Eng 24:353–363CrossRefGoogle Scholar
  10. Kozlov VA, Safonov MV (2003) Self-noise of molecular electronic transducers. Tech Phys 48:1579–1582CrossRefGoogle Scholar
  11. Kozlov VA, Korshak AN, Petkin NV (1991) Theory of diffusion-type transducers for ultralow electrolyte flow-rates. Sov Electrochem 27:16–21Google Scholar
  12. Krishtop VG, Agafonov VM, Bugaev AS (2012) Technological principles of motion parameter transducers based on mass and charge transport in electrochemical microsystems. Russ J Electrochem 48(7):746–755CrossRefGoogle Scholar
  13. Larcam CW (1965) Theoretical analysis of the solion polarized cathode acoustic linear transducer. J Acoust Soc Am 37:664–678CrossRefGoogle Scholar
  14. Lee WHK, Evans JR, Huang B-S, Hutt CR, Lin C-J, Liu C-C, Nigbor RL (2011) Measuring rotational ground motions in seismological practice. Information sheet. IS 5.3. Feb 2011; doi:10.2312/GFZ.NMSOP-2_IS_5.3Google Scholar
  15. Lidorenko NS, Ilin BI, Zaidenman IA, Sobol VV, Shchigorev IG (1984) An introduction to molecular electronics. Enegoatomizdat, MoscowGoogle Scholar
  16. Lin C-J, Liu G (2013) Calibration and applications of a rotational sensor www.iris.edu/hq/sits_13_docs/mon/Lin.pptx
  17. Panferov AP, Kharlamov AV (2001) Theoretical and experimental study of an electrochemical converter of a pulsing electrolyte flow. Russ J Electrochem 37:394–398CrossRefGoogle Scholar
  18. Reznikova LA, Morgunova EE, Bograchev DA, Grigin AP, Davydov AD (2001) Limiting current in iodine–iodide system on vertical electrode under conditions of natural convection. Russ J Electrochem 37:382–387CrossRefGoogle Scholar
  19. Sun Zh, Agafonov VM (2010) 3D numerical simulation of the pressure-driven flow in a four-electrode rectangular micro-electrochemical accelerometer. Sensors Actuators B Chem 146:231–238. www.elsevier.com/locate/snb
  20. Volgin VM, Volgina OV, Bograchev DA, Davydov AD (2003) Simulation of ion transfer under conditions of natural convection by the finite difference method. J Electroanal Chem 546:15–22CrossRefGoogle Scholar
  21. Wittenborn AF (1958) Analysis of a logarithmic solion pressure detector. J Acoust Soc Am 30:683–683CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Vadim M. Agafonov
    • 1
  • Alexander V. Neeshpapa
    • 2
  • Anna S. Shabalina
    • 1
  1. 1.Center for Molecular ElectronicsMoscow Institute of Physics and TechnologyMoscowRussia
  2. 2.R-sensors LLCDolgoprudnyRussia