Skip to main content

Tuned Mass and Parametric Pendulum Dampers Under Seismic Vibrations

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Earthquake Engineering

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adam C, Heuer R, Pirrotta A (2003) Experimental dynamic analysis of elastic–plastic shear frames with secondary structures. Exper Mech 43(2):124–130

    Article  Google Scholar 

  • Bergman L, McFarland D, Hall J, Johnson E, Kareem A (1989) Optimal distribution of tuned mass dampers in wind-sensitive structures. In: Structural safety and reliability, ASCE, pp 95–102

    Google Scholar 

  • Bisegna P, Caruso G (2012) Closed-form formulas for the optimal pole-based design of tuned mass dampers. J Sound Vib 331(10):2291–2314

    Article  Google Scholar 

  • Bobryk R, Chrzeszczyk A (2009) Stability regions for mathieu equation with imperfect periodicity. Phys Lett A 373(39):3532–3535

    Article  MathSciNet  MATH  Google Scholar 

  • Brock JE (1946) A note on the damped vibration absorber. J Appl Mech, ASME 13, A–284

    Google Scholar 

  • Carpineto N, Lacarbonara W, Vestroni F (2014) Hysteretic tuned mass dampers for structural vibration mitigation. J Sound Vib 333(5):1302–1318

    Article  Google Scholar 

  • Cartmell M, Cartmell M (1990) Introduction to linear, parametric and nonlinear vibrations. Chapman and Hall, London

    MATH  Google Scholar 

  • Cho DS, Mo CK, Ban GS, Lee KH (2003) Modal interactions in an autoparametric vibration absorber to narrow band random excitation. KSME Int J 17(1):97–104

    Google Scholar 

  • Chowdhury AH, Iwuchukwu MD, Garske JJ (1987) The past and future of seismic effectiveness of tuned mass dampers, structural control (Leipholz, H.H.E., ed.). Martinus Nijhoff Publishers, Dordrecht 105–127

    Google Scholar 

  • Chung L, Wu L, Lien K, Chen H, Huang H (2013) Optimal design of friction pendulum tuned mass damper with varying friction coefficient. Struct Control Health Monitor 20(4):544–559

    Article  Google Scholar 

  • Crandall SH, Mark WD (1963) Random vibration in mechanical systems, vol 963. Academic, New York

    Google Scholar 

  • Debbarma R, Hazari S (2013) Mass distribution of multiple tuned mass dampers for vibration control of structures under earthquake load. Int J Emerg Technol Adv Eng 3(8):198–202

    Google Scholar 

  • Den Hartog JP (2013) Mechanical vibrations. Courier Dover Publications, New York

    Google Scholar 

  • Di Matteo A, Lo Iacono F, Navarra G, Pirrotta A (2014) Direct evaluation of the equivalent linear damping for tuned liquid column damper systems in random vibration for pre-design purpose. Int J Non-Linear Mech 63:19–30

    Article  Google Scholar 

  • Dimentberg M, Iourtchenko D (2004) Random vibrations with impacts: a review. Nonlinear Dynam 36(2–4):229–254

    Article  MathSciNet  MATH  Google Scholar 

  • Elgamal A, He L (2004) Vertical earthquake ground motion records: an overview. J Earthquake Eng 8(5):663–697

    Google Scholar 

  • Hunt JB (1979) Dynamic vibration absorbers. Mechanical Engineering Publications, London

    Google Scholar 

  • Ibrahim R (2008) Recent advances in nonlinear passive vibration isolators. J Sound Vib 314(3):371–452

    Article  Google Scholar 

  • Ibrahim RA (2009) Vibro-impact dynamics: modeling, mapping and applications, vol 43. Springer, Berlin

    Google Scholar 

  • Ibrahim R, Roberts J (1976) Broad band random excitation of a two-degree-of-freedom system with autoparametric coupling. J Sound Vib 44(3):335–348

    Article  MATH  Google Scholar 

  • Ikeda T (2011) Nonlinear responses of dual-pendulum dynamic absorbers. J Comput Nonlinear Dyn 6(1):011012

    Article  Google Scholar 

  • Jang S-J, Brennan M, Rustighi E, Jung H-J (2012) A simple method for choosing the parameters of a two degree-of-freedom tuned vibration absorber. J Sound Vib 331(21):4658–4667

    Article  Google Scholar 

  • Kareem A, Kline S (1995) Performance of multiple mass dampers under random loading. J Struct Eng 121(2):348–361

    Article  Google Scholar 

  • Kareem A, Kijewski T, Tamura Y (1999) Mitigation of motions of tall buildings with specific examples of recent applications. Wind Struct 2(3):201–251

    Article  Google Scholar 

  • Kaynia AM, Biggs JM, Veneziano D (1981) Seismic effectiveness of tuned mass dampers. J Struct Div 107(8):1465–1484

    Google Scholar 

  • Krenk S (2005) Frequency analysis of the tuned mass damper. J Appl Mech 72(6):936–942

    Article  MATH  Google Scholar 

  • Krenk S, Høgsberg J (2008) Tuned mass absorbers on damped structures under random load. Probab Eng Mech 23(4):408–415

    Article  Google Scholar 

  • Krenk S, Høgsberg J (2014) Tuned mass absorber on a flexible structure. J Sound Vib 333(6):1577–1595

    Article  Google Scholar 

  • Majcher K, Wójcicki Z (2014) Kinematically excited parametric vibration of a tall building model with a tmd. Part 1: numerical analyses. Arch Civil Mech Eng 14(1):204–217

    Article  Google Scholar 

  • Ormondroyd J (1928) Theory of the dynamic vibration absorber. Trans ASME 50:9–22

    Google Scholar 

  • Rüdinger F (2007) Tuned mass damper with nonlinear viscous damping. J Sound Vib 300(3):932–948

    Article  Google Scholar 

  • Sadek F, Mohraz B, Taylor AW, Chung RM (1997) A method of estimating the parameters of tuned mass dampers for seismic applications. Earthquake Eng Struct Dynam 26(6):617–636

    Article  Google Scholar 

  • Sladek JR, Klingner RE (1983) Effect of tuned-mass dampers on seismic response. J Struct Eng 109(8):2004–2009

    Article  Google Scholar 

  • Song Y, Sato H, Iwata Y, Komatsuzaki T (2003) The response of a dynamic vibration absorber system with a parametrically excited pendulum. J Sound Vib 259(4):747–759

    Article  Google Scholar 

  • Soong T, Spencer B Jr (2002) Supplemental energy dissipation: state-of-the-art and state-of-the-practice. Eng Struct 24(3):243–259

    Article  Google Scholar 

  • Soto MG, Adeli H (2013) Tuned mass dampers. Arch Comput Meth Eng 20(4):419–431

    Article  Google Scholar 

  • Tigli OF (2012) Optimum vibration absorber (tuned mass damper) design for linear damped systems subjected to random loads. J Sound Vib 331(13):3035–3049

    Article  Google Scholar 

  • Tondl A, Ruijgrok T, Verhulst F, Nabergoj R (2000) Autoparametric resonance in mechanical systems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Tsai H-C, Lin G-C (1993) Optimum tuned-mass dampers for minimizing steady-state response of support-excited and damped systems. Earthquake Eng Struct Dyn 22(11):957–973

    Article  Google Scholar 

  • Vakakis A, Paipetis S (1986) The effect of a viscously damped dynamic absorber on a linear multi-degree-of-freedom system. J Sound Vib 105(1):49–60

    Article  Google Scholar 

  • Val DV, Segal F (2005) Effect of damping model on pre-yielding earthquake response of structures. Eng Struct 27(14):1968–1980

    Article  Google Scholar 

  • Wang A-P, Lin Y-H (2007) Vibration control of a tall building subjected to earthquake excitation. J Sound Vib 299(4):757–773

    Article  Google Scholar 

  • Warburton G (1981) Optimum absorber parameters for minimizing vibration response. Earthquake Eng Struct Dyn 9(3):251–262

    Article  Google Scholar 

  • Warburton G (1982) Optimum absorber parameters for various combinations of response and excitation parameters. Earthquake Eng Struct Dyn 10(3):381–401

    Article  Google Scholar 

  • Warminski J, Kecik K (2009) Instabilities in the main parametric resonance area of a mechanical system with a pendulum. J Sound Vib 322(3):612–628

    Article  Google Scholar 

  • Wiesner KB (1979) Tuned mass dampers to reduce building wind motion. In: ASCE convention and exposition, vol 3510. ASCE, Boston

    Google Scholar 

  • Wirsching PH, Campbell GW (1973) Minimal structural response under random excitation using the vibration absorber. Earthquake Eng Struct Dyn 2(4):303–312

    Article  Google Scholar 

  • Xu X, Wiercigroch M (2007) Approximate analytical solutions for oscillatory and rotational motion of a parametric pendulum. Nonlinear Dyn 47(1–3):311–320

    MathSciNet  MATH  Google Scholar 

  • Yurchenko D, Alevras P (2013a) Dynamics of the n-pendulum and its application to a wave energy converter concept. Int J Dyn Control 1(4):290–299

    Article  Google Scholar 

  • Yurchenko D, Alevras P (2013b) Stochastic dynamics of a parametrically base excited rotating pendulum. In: Procedia IUTAM 6, pp 160–168

    Google Scholar 

  • Yurchenko D, Naess A, Alevras P (2013) Pendulum’s rotational motion governed by a stochastic mathieu equation. Probabilist Eng Mech 31:12–18

    Article  Google Scholar 

  • Zuo L, Nayfeh SA (2006) The two-degree-of-freedom tuned-mass damper for suppression of single-mode vibration under random and harmonic excitation. J Vib Acoust 128(1):56–65

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniil Yurchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Yurchenko, D. (2015). Tuned Mass and Parametric Pendulum Dampers Under Seismic Vibrations. In: Beer, M., Kougioumtzoglou, I., Patelli, E., Au, IK. (eds) Encyclopedia of Earthquake Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36197-5_338-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36197-5_338-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36197-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics