Skip to main content

Physics-Based Ground-Motion Simulation

  • Living reference work entry
  • First Online:

Synonyms

Deterministic earthquake simulation; Deterministic ground-motion simulation; Physics-based earthquake simulation

Introduction

Physics-based earthquake ground-motion simulation, also referred to as deterministic earthquake ground-motion simulation, can be defined as the prediction of the ground motion generated by earthquakes by means of numerical methods and models that incorporate explicitly the physics of the earthquake source and the resulting propagation of seismic waves. Other approaches such as the stochastic ground-motion simulation method or ground-motion prediction equations (i.e., attenuation relationships) integrate the physics and specific characteristics of the earthquake source, directivity, path, attenuation and scattering, basin, and site effects by means of indirect, approximate, or statistical approaches. These methods are valid representations of the physics of earthquakes, but do not necessarily solve the accepted mathematical abstractions that describe the...

This is a preview of subscription content, log in via an institution.

References

  • Aagaard BT, Hall JF, Heaton TH (2001) Characterization of near source ground motions with earthquake simulations. Earthq Spectra 17(2):177–207

    Article  Google Scholar 

  • Aagaard BT, Brocher TM, Dolenc D, Dreger D, Graves RW, Harmsen S, Hartzell S, Larsen S, Zoback ML (2008) Ground-motion modeling of the 1906 San Francisco earthquake, part I: validation using the 1989 Loma Prieta earthquake. Bull Seismol Soc Am 98(2):989–1011

    Article  Google Scholar 

  • Alterman Z, Karal FC (1968) Propagation of elastic waves in layered media by finite difference methods. Bull Seismol Soc Am 58(1):367–398

    Google Scholar 

  • Anderson JG (2004) Quantitative measure of the goodness-of-fit of synthetic seismograms. In: Proceedings of the 13th world conference on earthquake engineering. International Association for Earthquake Engineering Paper, 243. Vancouver

    Google Scholar 

  • Bao H, Bielak J, Ghattas O, Kallivokas LF, O’Hallaron DR, Shewchuk JR, Xu J (1998) Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers. Comput Methods Appl Mech Eng 152(1–2):85–102

    Article  MATH  Google Scholar 

  • Bielak J, MacCamy RC, McGhee DS, Barry A (1991) Unified symmetric BEM-FEM for site effects on ground motion – SH waves. J Eng Mech ASCE 117(10):2265–2285

    Article  Google Scholar 

  • Bielak J, Graves RW, Olsen KB, Taborda R, Ramírez-Guzmán L, Day SM, Ely GP, Roten D, Jordan TH, Maechling PJ, Urbanic J, Cui Y, Juve G (2010) The ShakeOut earthquake scenario: verification of three simulation sets. Geophys J Int 180(1):375–404

    Article  Google Scholar 

  • Bielak J, Karaoglu H, Taborda R (2011) Memory-efficient displacement-based internal friction for wave propagation simulation. Geophysics 76(6):T131–T145

    Article  Google Scholar 

  • Boore DM (1972) Finite difference methods for seismic wave propagation in heterogeneous materials. In: Bolt BA (ed) Methods in computational physics, vol 11. Academic Press, New York

    Google Scholar 

  • Bouchon M (1979) Discrete wave number representation of elastic wave fields in three-space dimensions. J Geophys Res 84(B7):3609–3614

    Article  Google Scholar 

  • Brocher TM (2008) Compressional and shear-wave velocity versus depth relations for common rock types in northern California. Bull Seismol Soc Am 98(2):950–968

    Article  Google Scholar 

  • Carcione JM, Kosloff D, Kosloff R (1988) Wave propagation simulation in a linear viscoelastic medium. Geophys J Int 95(3):597–611

    Article  MATH  MathSciNet  Google Scholar 

  • Cerjan C, Kosloff D, Reshef M (1985) A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics 50:705–708

    Article  Google Scholar 

  • Chaljub E, Moczo P, Tsuno S, Bard P-Y, Kristek J, Kaser M, Stupazzini M, Kristekova M (2010) Quantitative comparison of four numerical predictions of 3D ground motion in the Grenoble Valley, France. Bull Seismol Soc Am 100(4):1427–1455

    Article  Google Scholar 

  • Cui Y, Olsen K, Jordan T, Lee K, Zhou J, Small P, Roten D, Ely G, Panda D, Chourasia A, Levesque J, Day S, Maechling P (2010) Scalable earthquake simulation on petascale supercomputers. In: SC'10 Proceedings of the 2010 ACM/IEEE international conference for high performance computing, networking, storage and analysis, New Orleans, LA, November 13-19. pp 1–20

    Google Scholar 

  • Day SM, Bradley CR (2001) Memory-efficient simulation of anelastic wave propagation. Bull Seismol Soc Am 91(3):520–531

    Article  Google Scholar 

  • Day SM, Minster JB (1984) Numerical simulation of attenuated wavefields using a Padé approximant method. Geophys J Int 78(1):105–118

    Article  MATH  Google Scholar 

  • Day SM, Roten D, Olsen KB (2012) Adjoint analysis of the source and path sensitivities of basin-guided waves. Geophys J Int 189(2):1103–1124

    Article  Google Scholar 

  • Dumbser M, Käser M (2006) An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes – II. The three-dimensional isotropic case. Geophys J Int 167(1):319–336

    Article  Google Scholar 

  • Dupros F, de Martin F, Foerster E, Komatitsch D, Roman J (2010) High-performance finite-element simulations of seismic wave propagation in three-dimensional nonlinear inelastic geological media. Parallel Comput 36(5–6):308–325

    Article  MATH  Google Scholar 

  • Ely GP, Jordan TH, Small P, Maechling PJ (2010) A Vs30-derived near-surface seismic velocity model. In: Abstract AGU fall meeting, no S51A-1907, San Francisco, 13–17 Dec 2010

    Google Scholar 

  • Emmerich H, Korn M (1987) Incorporation of attenuation into time-domain computations of seismic wave fields. Geophysics 52(9):1252–1264

    Article  Google Scholar 

  • Frankel A, Vidale J (1992) A three-dimensional simulation of seismic waves in the Santa Clara Valley, California, from a Loma Prieta aftershock. Bull Seismol Soc Am 82(5):2045–2074

    Google Scholar 

  • Gottschämmer E, Olsen KB (2001) Accuracy of the explicit planar free-surface boundary condition implemented in a fourth-order staggered-grid velocity-stress finite-difference scheme. Bull Seismol Soc Am 91(3):617–623

    Article  Google Scholar 

  • Graves RW (1996) Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull Seismol Soc Am 86(4):1091–1106

    MathSciNet  Google Scholar 

  • Graves RW (2008) The seismic response of the San Bernardino basin region during the 2001 Big Bear lake earthquake. Bull Seismol Soc Am 98(1):241–252

    Article  MathSciNet  Google Scholar 

  • Graves RW, Pitarka A (2010) Broadband ground-motion simulation using a hybrid approach. Bull Seismol Soc Am 100(5A):2095–2123

    Article  Google Scholar 

  • Graves R, Jordan T, Callaghan S, Deelman E, Field E, Juve G, Kesselman C, Maechling P, Mehta G, Milner K, Okaya D, Small P, Vahi K (2011) CyberShake: a physics-based seismic hazard model for Southern California. Pure Appl Geophys 168(3–4):367–381

    Article  Google Scholar 

  • Hartzell S, Harmsen S, Frankel A (2010) Effects of 3D random correlated velocity perturbations on predicted ground motions. Bull Seismol Soc Am 100(4):1415–1426

    Article  Google Scholar 

  • Hermann V, Käser M, Castro CE (2011) Non-conforming hybrid meshes for efficient 2-D wave propagation using the Discontinuous Galerkin Method. Geophys J Int 184(2):746–758

    Article  Google Scholar 

  • Idriss IM, Seed HB (1968) Seismic response of horizontal soil layers. J Soil Mech Found Div ASCE 94(SM4):1003–1031

    Google Scholar 

  • Jones LM, Bernknopf R, Cox D, Goltz J, Hudnut K, Mileti D, Perry S, Ponti D, Porter K, Reichle M, Seligson H, Shoaf K, Treiman J, Wein A (2008) The ShakeOut scenario, Technical report USGS-R1150, CGS-P25. U.S. Geological Survey, Reston, Virginia

    Google Scholar 

  • Koketsu K, Miyake H, Fujiwara H, Hashimoto T (2009) Progress towards a japan integrated velocity structure model and long-period ground motion hazard map. In: Proceedings of the 14th world conference on earthquake engineering, paper no S10–038, Beijing

    Google Scholar 

  • Komatitsch D, Vilotte J-P (1998) The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull Seismol Soc Am 88(2):368–392

    Google Scholar 

  • Komatitsch D, Tsuboi S, Ji C, Tromp J (2003) A 14.6 billion degrees of freedom, 5 teraflops, 2.5 terabyte earthquake simulation on the Earth Simulator. In: SC’03 Proceedings of the ACM/IEEE conference for high performance computing and networking. IEEE Computer Society, Phoenix, p 8

    Google Scholar 

  • Komatitsch D, Liu Q, Tromp J, Suss P, Stidham C, Shaw JH (2004) Simulations of ground motion in the Los Angeles basin based upon the spectral-element method. Bull Seismol Soc Am 94(1):187–206

    Article  Google Scholar 

  • Komatitsch D, Erlebacher G, Göddeke D, Michéa D (2010) High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster. J Comput Phys 229(20):7692–7714

    Article  MATH  MathSciNet  Google Scholar 

  • Levander AR (1988) Fourth-order finite-difference P-SV seismograms. Geophysics 53(11):1425–1436

    Article  Google Scholar 

  • Liu H-P, Anderson DL, Kanamori H (1976) Velocity dispersion due to anelasticity; implications for seismology and mantle composition. Geophys J R Astron Soc 47(1):41–58

    Article  Google Scholar 

  • Lysmer J, Drake LA (1972) A finite element method for seismology, Chapter 6. In: Alder B, Fernbach S, Bolt B (eds) Methods in computational physics, vol 11. Academic, New York

    Google Scholar 

  • Ma S, Liu P (2006) Modeling of the perfectly matched layer absorbing boundaries and intrinsic attenuation in explicit finite-element methods. Bull Seismol Soc Am 96(5):1779–1794

    Article  Google Scholar 

  • Marcinkovich C, Olsen K (2003) On the implementation of perfectly matched layers in a three-dimensional fourth-order velocity-stress finite difference scheme. J Geophys Res 108(B5):2276

    Article  Google Scholar 

  • Moczo P, Kristek J (2005) On the rheological models used for time-domain methods of seismic wave attenuation. Geophys Res Lett 32(L01306):5

    Google Scholar 

  • Moczo P, Kristek J, Vavryuk V, Archuleta RJ, Halada L (2002) 3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities. Bull Seismol Soc Am 92(8):3042–3066

    Article  Google Scholar 

  • Moczo P, Kristek J, Halada L (2004) The finite difference method for seismologists – an introduction. Comenius University, Bratislava

    Google Scholar 

  • Mossessian TK, Dravinski M (1987) Application of a hybrid method for scattering of P, SV, and Rayleigh waves by near-surface irregularities. Bull Seismol Soc Am 77(5):1784–1803

    Google Scholar 

  • Ohminato T, Chouet BA (1997) A free-surface boundary condition for including 3D topography in the finite-difference method. Bull Seismol Soc Am 87(2):494–515

    Google Scholar 

  • Olsen KB (1994) Simulation of three-dimensional wave propagation in the Salt Lake basin. PhD thesis, University of Utah, Salt Lake City

    Google Scholar 

  • Olsen KB, Mayhew JE (2010) Goodness-of-fit criteria for broadband synthetic seismograms, with application to the 2008 M w 5.4 Chino Hills, California, earthquake. Seismol Res Lett 81(5):715–723

    Article  Google Scholar 

  • Olsen KB, Pechmann JC, Schuster GT (1995) Simulation of 3D elastic wave propagation in the Salt Lake basin. Bull Seismol Soc Am 85(6):1688–1710

    Google Scholar 

  • Olsen KB, Day SM, Bradley CR (2003) Estimation of Q for long-period (>2 sec) waves in the Los Angeles basins. Bull Seismol Soc Am 93(2):627–638

    Article  Google Scholar 

  • Olsen KB, Day SM, Minster JB, Cui Y, Chourasia A, Faerman M, Moore R, Maechling P, Jordan T (2006) Strong shaking in Los Angeles expected from southern San Andreas earthquake. Geophys Res Lett 33(L07305):1–4

    Google Scholar 

  • Olsen KB, Day SM, Minster JB, Cui Y, Chourasia A, Okaya D, Maechling P, Jordan T (2008) TeraShake2: spontaneous rupture simulations of M W 7.7 earthquakes on the southern San Andreas fault. Bull Seismol Soc Am 98(3):1162–1185

    Article  Google Scholar 

  • Porter K, Hudnut K, Perry S, Reichle M, Scawthorn C, Wein A (2011) Foreword. Earthq Spectra 27(2):235–237

    Article  Google Scholar 

  • Prevost J-H (1978) Plasticity theory for soil stress–strain behavior. J Eng Mech Div ASCE 104(5):1177–1194

    Google Scholar 

  • Restrepo D, Bielak J (2014) Virtual topography: a fictitious domain approach for analyzing free-surface irregularities in large-scale earthquake ground motion simulation. Int J Numer Methods Eng 100(7):504–533

    Article  MathSciNet  Google Scholar 

  • Rietmann M, Messmer P, Nissen-Meyer T, Peter D, Basini P, Komatitsch D, Schenk O, Tromp J, Boschi L, Giardini D (2012) Forward and adjoint simulations of seismic wave propagation on emerging large-scale gpu architectures. In: SC’12 Proceedings of the ACM/IEEE international conference on high performance computing, networking, storage and analysis, Salt Lake City, pp 38:1–38:11

    Google Scholar 

  • Robertsson JO (1996) A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography. Geophysics 61(6):1921–1934

    Article  Google Scholar 

  • Roten D, Olsen KB, Pechmann JC (2012) 3D simulations of M 7 earthquakes on the Wasatch fault, Utah, part II: broadband (0–10 Hz) ground motions and nonlinear soil behavior. Bull Seismol Soc Am 92(5):2008–2030

    Article  Google Scholar 

  • Roten D, Olsen KB, Day SM, Cui Y, Fäh D (2014) Expected seismic shaking in Los Angeles reduced by San Andreas fault zone plasticity. Geophys Res Lett 41(8):2769–2777

    Article  Google Scholar 

  • Sánchez-Sesma FJ, Luzón F (1995) Seismic response of three-dimensional alluvial valleys for incident P, S, and Rayleigh waves. Bull Seismol Soc Am 85(1):269–284

    Google Scholar 

  • Seriani G (1998) 3-D large-scale wave propagation modeling by spectral element method on Cray T3E multiprocessor. Comput Methods Appl Mech Eng 164(1–2):235–247

    Article  MATH  Google Scholar 

  • Shi Z, Day SM (2013) Rupture dynamics and ground motion from 3-D rough-fault simulations. J Geophys Res 118(3):1122–1141

    Article  Google Scholar 

  • Small P, Gill D, Maechling PJ, Taborda R, Callagham S, Jordan TH, Olsen KB, Ely G (2015) The unified community velocity model software framework. Comput Geosci (Submitted)

    Google Scholar 

  • Smith WD (1975) The application of finite element analysis to body wave propagation problems. Geophys J Int 42(2):747–768

    Article  Google Scholar 

  • Taborda R, Bielak J (2013) Ground-motion simulation and validation of the 2008 Chino Hills, California, earthquake. Bull Seismol Soc Am 103(1):131–156

    Article  Google Scholar 

  • Taborda R, Ramírez-Guzmán L, López J, Urbanic J, Bielak J, O’Hallaron D (2007) Shake-Out and its effects in Los Angeles and Oxnard areas. Eos Trans AGU 88(52): Fall meeting supplement, abstract IN21B–0477

    Google Scholar 

  • Taborda R, Bielak J, Restrepo D (2012) Earthquake ground motion simulation including nonlinear soil effects under idealized conditions with application to two case studies. Seismol Res Lett 83(6):1047–1060

    Article  Google Scholar 

  • Tu T, Yu H, Ramírez-Guzmán L, Bielak J, Ghattas O, Ma K-L, O’Hallaron DR (2006) From mesh generation to scientific visualization: an end-to-end approach to parallel supercomputing. In: SC’06 Proceedings of the ACM/IEEE international conference for high performance computing, networking, storage and analysis. IEEE Computer Society, Tampa, p 15

    Google Scholar 

  • Virieux J (1984) SH-wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 49(11):1933–1957

    Article  Google Scholar 

  • Withers KB, Olsen KB, Shi S, Day SM, Takedatsu R (2013) Deterministic high-frequency ground motions from simulations of dynamic rupture along rough faults. In: Abstract SSA annual meeting, Salt Lake City, 17–19 Apr 2013

    Google Scholar 

  • Withers KB, Olsen KB, Shi Z, Day SM (2014) High-complexity deterministic Q(f) simulation of the 1994 Northridge M w 6.7 earthquake. In: Proceedings of the SCEC annual meeting, no GMP-066, Palm Springs, 6–10 Sept 2014

    Google Scholar 

  • Wong HL, Trifunac MD (1974) Surface motion of a semi-elliptical alluvial valley for incident plane SH waves. Bull Seismol Soc Am 64(5):1389–1408

    Google Scholar 

  • Zahradnik J, Moczo P, Hron F (1993) Testing four elastic finite-difference schemes for behavior at discontinuities. Bull Seismol Soc Am 83(1):107–129

    Google Scholar 

  • Zhou J, Unat D, Choi DJ, Guest CC, Cui Y (2012) Hands-on performance tuning of 3D finite difference earthquake simulation on GPU fermi chipset. Procedia Comput Sci 9:976–985

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Taborda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Taborda, R., Roten, D. (2015). Physics-Based Ground-Motion Simulation. In: Beer, M., Kougioumtzoglou, I., Patelli, E., Au, IK. (eds) Encyclopedia of Earthquake Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36197-5_240-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36197-5_240-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Online ISBN: 978-3-642-36197-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics