• Welf Guntram Drossel
  • Kenny Pagel
Living reference work entry



Unconventional Actuator Systems

An actuator is a functional element which connects the information processing part of an electronic control system in a technical of nontechnical process. Actuators can be used to control the flow of energy, mass or volume. The output quantity of an actuator is energy or power, often in the form of a mechanical working potential (force times displacement). The actuator control is always achieved using very low electrical power, ideally without any power consumption. (Janocha 2004)

Actuators can be classified as conventional and unconventional actuators. Conventional actuators are commonly used as essential components for mechatronic systems (see Fig. 1 (left)). These are, for instance, electrical motors, pneumatic actuators, hydraulic pistons, or relays.
This is a preview of subscription content, log in to check access.


  1. Abele E, Hanselka H, Haase F, Schlote D, Schiffler A (2008) Development and design of an active work piece holder driven by piezo actuators. Prod Eng Res Dev 2:437–442CrossRefGoogle Scholar
  2. Actuator Solutions GMBH (2016) 3/3 actuator, Date of access: 13 Feb 2017
  3. Aggogeri F, Al-Bender F, Brunner B, Elsaid M, Mazzola M, Merlo A, Ricciardi D, de la O’Rodriguez M, Salvi E (2013) Design of Piezo-based AVC system for machine tool applications. Mech Syst Signal Process 36(1):53–65CrossRefGoogle Scholar
  4. Bäume T, Zorn W, Drossel W-G, Rupp G (2015) Step by step control of a deep drawing process with piezo-electric actuators in serial operation. MATEC Web of Conferences 21, 2015, 04008(2015), 4th international conference on new forming technology (ICNFT 2015), Glasgow, UK, August 6–9, 2015.
  5. Brecher C, Schauerte G, Lange S (2005) Adaptronisches Bohrwerkzeug zur Feinbearbeitung von Zylinderhülsen [Adaptronical drilling tool for precision machining of cylinder liner]. Inno Innov Tech--Neue Anwendungen 32(10):14–15. Jg. 12/2005 (in German)Google Scholar
  6. Brecher C, Schauerte G, Merz M (2007) Modeling and simulation of adaptronic drilling tool axes as the basis of control design. Prod Eng Res Dev 1(3):297–301CrossRefGoogle Scholar
  7. Brecher C, Manoharan D, Ladra U, Köpken H-G (2010) Chatter suppression with an active workpiece holder. Prod Eng Res Dev 4:239–245CrossRefGoogle Scholar
  8. Brehl DE, Dow TA (2008) Review of vibration assisted machining. Precis Eng 32(3):153–172. CrossRefGoogle Scholar
  9. Calkins F, Butler G, Mabe J (2006) Variable geometry chevrons for jet noise reduction. 12th AIAA/CEAS aeroacoustics conference (27th aeroacoustics conference), May 8–10, Cambridge, MA, May 2006, American Institute of Aeronautics and Astronautics, RestonGoogle Scholar
  10. Cambridge Mechatronics Ltd. CML OIS actuator, Date of access: 13 Feb 2017
  11. Denkena B, Gümmer O (2012) Process stabilization with an adaptronic spindle system. Prod Eng Res Dev 6(4):485–492CrossRefGoogle Scholar
  12. Denkena B, Will JC, Sellmeier V (2006) Prediction of process stability and dynamic forces of an adaptronic spindle system, Conf.-Speech, Adaptronic Congress 2006, May 3–4, 2006, Göttingen, pp 9.1–9.7Google Scholar
  13. Denkena B, Köhler J, Mörke T, Gümmer O (2012) High-performance cutting of micro patterns. In: Fifth CIRP conference on high performance cutting 2012. Procedia CIRP 1:144–149Google Scholar
  14. Drossel W-G, Kunze H, Junker T, Ullrich M (2011) Piezo-based parallel kinematics for tool positioning, International symposium on piezocomposite applications (ISPA), September 22nd–23rd, 2011, DresdenGoogle Scholar
  15. Drossel W-G, Hochmuth C, Schneider R (2013a) An adaptronic system to control shape and surface of liner bores during the honing process. CIRP Ann Manuf Technol 62(1):331–334. CrossRefGoogle Scholar
  16. Drossel W-G, Pagel K, Bucht A, Roscher H-J, Kunze H (2013b) Piezo assisted machining – an overview. International symposium on piezocomposite applications (ISPA 2013), September 20th, 2013, DresdenGoogle Scholar
  17. Drossel W-G, Bucht A, Hochmuth C, Schubert A, Stoll A, Schneider J, Schneider R (2014) High performance of machining processes by applying adaptronic systems. In: 6th CIRP international conference on high performing cutting (HPC2014). Procedia CIRP 14:500–505Google Scholar
  18. Drossel W-G, Kunze H, Bucht A, Weisheit L, Pagel K (2015a) Smart3 – smart materials for smart applications. In: CIRP 25th design conference innovative product creation. Procedia CIRP 36:211–216Google Scholar
  19. Drossel W-G, Bucht A, Kunze H, Pagel K (2015b) The application of piezo based subsystems for improved machining processes. In: ASME 2015 conference on smart materials, adaptive structures and intelligent systems, Colorado Springs, Colorado, USA, September 21–23, 2015, vol 2: Integrated system design and implementation; structural health monitoring; bioinspired smart materials and systems, energy harvesting. ASME Paper No. SMASIS2015-8878, pp V002T04A005Google Scholar
  20. Elfizy AT, Bone GM, Elbestawi MA (2005) Design and control of a dual-stage feed drive. Int J Mach Tool Manu 45(2):153–165. CrossRefGoogle Scholar
  21. Feucht F, Ketelaer J, Wolff A, Mori M, Fujishima M (2014) Latest machining technologies of hard-to-cut materials by ultrasonic machine tool. In: 6th CIRP international conference on high performance cutting, HPC2014, Procedia CIRP 14:148–152.
  22. Ghiotti A, Regazzo P, Bruschi S, Bariani PF (2010) Reduction of vibrations in blanking by MR dampers. CIRP Ann Manuf Technol 59(1):275–278CrossRefGoogle Scholar
  23. Hesselbach J (2011) Adaptronik für Werkzeugmaschinen [Smart structures in machine tools]. Shaker-Verlag, Aachen. (in German)Google Scholar
  24. Holz B, Janocha H (2010) MSM actuators – magnetic circuit concepts and operating modes. In: Borgmann H (ed) Actuator 10: 12th international conference on new actuators & 6th international exhibition on smart actuators and drive systems, June 14–16, 2010, Bremen, Germany, Conference Proceedings. WIrtschaftsförderung Bremen (WFB), Bremen, pp 307–310Google Scholar
  25. Jani JM, Leary M, Subic A, Gibson M (2013) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113CrossRefGoogle Scholar
  26. Janocha H (2004) Actuator – basics and applications. Springer, BerlinGoogle Scholar
  27. Jung J (2009) Aufbau eines Greifmechanismus mit FGL-Drahtaktoren [Design of a shape memory driven gripping mechanism], Diploma Thesis Technische Universität Dresden, 15.12.2009 (in German)Google Scholar
  28. Junker T, Bucht A, Navarro y de Sosa I, Pagel K, Drossel W-G (2014) In: Vin LJ d, Solis J (eds) Proceedings of the 14th mechatronics forum international conference, mechatronics 2014, June 16–18, 2014, Karlstad, Sweden. Karlstad University, Sweden, pp 24–29Google Scholar
  29. Malukhin K, Sung H, Ehmann K (2012) A shape memory alloy based tool clamping device. J Mater Process Technol 212(4):735–744CrossRefGoogle Scholar
  30. McGeough JA (1988) Advanced methods of machining. Chapman and Hall, London/New YorkGoogle Scholar
  31. Meier H, Pollmann J, Czechowicz A (2013) Design and control strategies for SMA actuators in a feed axis for precision machine tools. Prod Eng Res Dev 7:547–553CrossRefGoogle Scholar
  32. Möhring H-C, Brecher C, Abele E, Fleischer J, Bleicher F (2015) Materials in machine tool structures. CIRP Ann Manuf Technol 64(2):725–748CrossRefGoogle Scholar
  33. Navarro y de Sosa I, Bucht A, Junker T, Pagel K, Drossel W-G (2014) Novel compensation of axial thermal expansion in ball screw drives. Prod Eng Res Dev 8(3):397–406. CrossRefGoogle Scholar
  34. Neugebauer R, Denkena B, Wegener K (2007) Mechatronic systems for machine tools. CIRP Ann Manuf Technol 56(2):657–686CrossRefGoogle Scholar
  35. Neugebauer R, Pagel K, Bucht A, Wittstock V, Pappe A (2010a) Control concept for piezo-based actuator-sensor-units for uniaxial vibration damping in machine tools. Prod Eng Res Dev 4:413–419CrossRefGoogle Scholar
  36. Neugebauer R, Drossel W-G, Bucht A, Kranz B, Pagel K (2010b) Control design and experimental validation of an adaptive spindle support for enhanced cutting processes. CIRP Ann Manuf Technol 59(1):373–376CrossRefGoogle Scholar
  37. Neugebauer R, Kunze H, Bucht A (2011a) Erweiterung der Fertigungsgrenzen durch adaptronische Zusatzaktorik, Forum [Improvement of machining processes using piezo actuators]‚ Sensitive Fertigungstechnik‘, 10.-11.11.2011, Magdeburg. Date of Access: 27 Sept 2016 (in German)
  38. Neugebauer R, Mainda P, Drossel W-G, Kerschner M, Wolf K (2011b) Integrated piezoelectric actuators in deep drawing tools. In: Farinholt KM, Griffin SF (eds) Proc SPIE 7979, industrial and commercial applications of smart structures technologies, March 6–10, 2011, San Diego, CA, Paper 79790F. SPIE Press, Bellingham. Google Scholar
  39. Neugebauer R, Drossel W-G, Pagel K, Bucht A, Anders N (2011c) Design of a controllable shape-memory-actuator with mechanical lock function. In: Ghasemi-Nejhad MN (ed) Proc SPIE 7977 active and passive smart structures and integrated systems, San Diego, CA, March 6, 2011, Paper 797719. SPIE Press, Bellingham. Google Scholar
  40. Pagel K, Drossel W-G, Zorn W (2013) Multi-functional shape-memory-actuator with guidance function. Prod Eng Res Dev 7:491–496CrossRefGoogle Scholar
  41. Preumont A (1997) Vibration control of active structures: an introduction. Kluwer, DordrechtCrossRefMATHGoogle Scholar
  42. Ries M (2009) Aktive Motorspindel zur Unterdrückung von Ratterschwingungen im Fräsprozess [Active milling spindle for chatter suppression], Fortschritt-Berichte VDI, Reihe 2, Fertigungstechnik 670. VDI-Verlag, Düsseldorf. (in German)Google Scholar
  43. Shin W-C, Ro S-K, Park H-W, Park J-K (2009) Development of a micro/meso-tool clamp using a shape memory alloy for applications in micro-spindle units. Int J Mach Tools Manuf 49(7–8):579–585CrossRefGoogle Scholar
  44. Tellinin J, Suorsa I, Jääskeläinen A, Aaltio I, Ullakko K (2002) Basic properties Of magnetic shape memory actuators. In: Proceedings of ACTUATOR 2002, 8th international conference on new actuators 2002, June 10–12, 2002, Bremen, pp 566–569Google Scholar
  45. Truong DQ, Ahn KK (2012). MR fluid damper and its application to force sensorless damping control system. In: Berselli G, Vertechy R, Vassura G (eds) Smart actuation and sensing systems – recent advances and future challenges. InTech: online,
  46. Uhlmann E, Perfilov I, Oberschmidt D (2015) Two-axis vibration system for targeted influencing of micro-milling. In: Leach R (ed) Proceedings of the European Society for Precision Engineering and Nanotechnology –(EUSPEN):15th international conference & exhibition of the European Society of Precision Engineering and Nanotechnology, June 1–5, 2015, Leuven. EUSPEN, Bedford, pp 325–326Google Scholar
  47. Weinert K, Kersting M (2007) Adaptronic chatter damping system for deep hole drilling. In: International conference on smart machining systems, National Institute for Standards and Technologies (NIST), 13.3.-15.3. 2007, Gaithersburg, Maryland, USA, digitally published already correctedGoogle Scholar
  48. Woronko A, Huang J, Altintas Y (2003) Piezoelectric tool actuator for precision machining on conventional CNC turning centers. Precis Eng 27(4):335–345CrossRefGoogle Scholar
  49. Yang G (2001) Large-scale magnetorheological fluid damper for vibration mitigation: modeling, testing and control. Ph.D. Dissertation. University of Notre Dame, Notre Dame, p 33Google Scholar
  50. Youssef HA, El-Hofy H (2008) Machining technology: machine tools and operations. CRC Press, Boca RatonCrossRefGoogle Scholar
  51. Zimmermann P, Pagel K, Bucht A, Drossel W-G (2014) Design of a self-adjusting terminal connector based on shape memory alloys. In: Zagrai A (ed) American Society of Mechanical Engineers (ASME) conference on smart materials, adaptive structures and intelligent systems (SMASIS 2014), Proceedings: September 8–10, 2014, Newport, Rhode Island. ASME, New York. Paper 7429Google Scholar

Copyright information

© CIRP 2018

Authors and Affiliations

  1. 1.Fraunhofer Institute for Machine Tools and Forming Technology IWUChemnitzGermany

Section editors and affiliations

  • Hans-Christian Möhring
    • 1
  1. 1.Institut für WerkzeugmaschinenUniversität StuttgartStuttgartGermany