Modeling of Face Milling

  • Volker Schulze
Living reference work entry



Face milling is the machining process with highest productivity to effectively machine large surfaces of metallic components. Thus it is of utmost interest to optimize this widely applied process.

One important possibility to examine, analyze, and improve machining processes is the modeling and simulation. Using this technique the performance of cutting processes and characteristics of manufactured components can be predicted and planned in order to optimize productivity, quality, and cost (Tapoglou and Antoniadis 2012; van Luttervelt et al. 1998).

Modeling of face milling includes all modeling approaches dealing with the cutting process face milling. There are models describing the kinematics of the process itself; but in most cases one of the listed targets is being examined:
  • Force system/cutting forces

  • Cutting temperatures

  • Workpiece temperatures

  • Chip geometry and chipping volume

  • Surface...

This is a preview of subscription content, log in to check access.


  1. Adolfsson C, Ståhl J-E (1995) Cutting force model for multi-toothed cutting processes and force measuring equipment for face milling. Int J Mach Tools Manuf 35(12):1715–1728CrossRefGoogle Scholar
  2. Altintas Y, Budak E (1995) Analytical prediction of stability lobes in milling. Ann CIRP 44(1):357–362CrossRefGoogle Scholar
  3. Altintas Y, Engin S (2001) Generalized modeling of mechanics and dynamics of milling cutters. CIRP Ann Manuf Technol 50(1):25–30CrossRefGoogle Scholar
  4. Altintas Y, Jin X (2011) Mechanics of micro-milling with round edge tools. CIRP Ann Manuf Technol 60(1):77–80CrossRefGoogle Scholar
  5. Altintas Y, Merdol SD (2007) Virtual high performance milling. CIRP Ann Manuf Technol 56(1):81–84CrossRefGoogle Scholar
  6. Armarego EJA, Wang J, Deshpande NP (1995) Computer-aided predictive cutting model for forces in face milling allowing for tooth run-out. Ann CIRP 44(1):43–48CrossRefGoogle Scholar
  7. Arrazola PJ, Özel T, Umbrello D, Davies M, Jawahir IS (2013) Recent advances in modelling of metal machining processes. Ann CIRP 62(2):695–718CrossRefGoogle Scholar
  8. Aykut S, Gölcü M, Semiz S, Ergür HS (2007) Modeling of cutting forces as function of cutting parameters for face milling of satellite 6 using an artificial neural network. J Mater Process Technol 190:199–203CrossRefGoogle Scholar
  9. Bajic D, Celent L, Jozic S (2012) Modeling of the influence of cutting parameters on the surface roughness, tool wear and cutting force in face milling in off-line process control. J Mech Eng 58(11):673–682CrossRefGoogle Scholar
  10. Baro PK, Joshi SS, Kapoor SG (2005) Modeling of cutting forces in a face-milling operation with self-propelled round insert milling cutter. Int J Mach Tools Manuf 45:831–839CrossRefGoogle Scholar
  11. Bayoumi AE, Yücesan G, Hutton DV (1994a) On the closed form mechanistic modeling of milling: specific cutting energy, torque, and power. J Mater Eng Perform 3:151–158CrossRefGoogle Scholar
  12. Bayoumi AE, Yucesan G, Kendall LA (1994b) An analytic mechanistic cutting force model for milling operations: a theory and methodology. Trans ASME – J Eng Ind 116(3):324–330CrossRefGoogle Scholar
  13. Becke C (2011) Prozesskraftrichtungsangepasste Frässtrategien zur schädigungsarmen Bohrungsbearbeitung an faserverstärkten Kunststoffen [Milling strategies with regard to process force directions for low-damage drilling processes of fiber-reinforced plastics], PhD thesis, Karlsruhe Institute of Technology (in German)Google Scholar
  14. Benardos PG, Vosniakos GC (2002) Prediction of surface roughness in CNC face milling using neural networks and Taguchi’s design of experiments. Robot Comput Integr Manuf 18:343–354CrossRefGoogle Scholar
  15. Bhattacharyyaa P, Senguptaa D, Mukhopadhyayb S (2007) Cutting force-based real-time estimation of tool wear in face milling using a combination of signal processing techniques. Mech Syst Signal Process 21:2665–2683CrossRefGoogle Scholar
  16. Budak E, Ozturk E, Tunc LT (2009) Modeling and simulation of 5-axis milling processes. CIRP Ann Manuf Technol 58(1):347–350CrossRefGoogle Scholar
  17. Chang C-S (2005) Prediction of cutting forces in milling stainless steels using chamfered main cutting edge tool. J Mech 21(3):145–155CrossRefGoogle Scholar
  18. Denkena B, Köhler J, Hasselberg E (2013) Modeling of workpiece shape deviations in face milling of parallel workpiece compounds. Procedia CIRP 8:176–181CrossRefGoogle Scholar
  19. Felhö C, Karpuschewski B, Kundrák J (2015) Surface roughness modelling in face milling. Procedia CIRP 31:136–141CrossRefGoogle Scholar
  20. Fleischer J, Pabst R, Kelemen S (2007) Heat flow simulation for dry machining of power train castings. Ann CIRP 56(1):117–122CrossRefGoogle Scholar
  21. Franco P (2008) Effect of cutter axis tilt and average feed deviations on surface roughness of milled parts. In: International multi-conference on engineering and technological innovation: IMETI, OrlandoGoogle Scholar
  22. Fu HJ, Devor RE, Kapoor SG (1984) A mechanistic model for the prediction of the force system in face milling operations. J Eng Ind 1(2):81–88CrossRefGoogle Scholar
  23. Gu F, Kapoor SG, Devor RE, Bandyopadhyay P (1997) An enhanced cutting force model for face milling with variable cutter feed motion and complex workpiece geometry. J Manuf Sci Eng 119(4):467–475CrossRefGoogle Scholar
  24. Guzeev VI, Pimenov DY (2011) Cutting force in face milling with tool wear. Russ Eng Res 31(10):989–993CrossRefGoogle Scholar
  25. Hwang JH, Oh YT, Kwon WT (2003) In-process estimation of radial immersion ratio in face milling using cutting force. Int J Adv Manuf Technol 22:313–320CrossRefGoogle Scholar
  26. Kim HS, Ehmann KF (1993) A cutting force model for face milling operations. Int J Mach Tools Manuf 33(5):651–673CrossRefGoogle Scholar
  27. Kim T-Y, Woo J, Shin D, Kim J (1999) Indirect cutting force measurement in multi-axis simultaneous NC milling processes. Int J Mach Tools Manuf 39:1717–1731CrossRefGoogle Scholar
  28. Kuljanic E, Sortino E (2005) TWEM, a method based on cutting forces – monitoring tool wear in face milling. Int J Mach Tools Manuf 45:29–34CrossRefGoogle Scholar
  29. Ng E-G, Szablewski D, Dumitrescu M, Elbestawi MA, Sokolowski JH (2004) High speed face milling of an aluminium silicon alloy casting. CIRP Ann Manuf Technol 53(1):69–72CrossRefGoogle Scholar
  30. Oxley PLB (1989) Mechanics of machining: an analytical approach to assessing machinability. Ellis Horwood, ChichesterGoogle Scholar
  31. Pabst R (2008) Mathematische Modellierung der Wärmestromdichte zur Simulation des thermischen Bauteilverhaltens bei der Trockenbearbeitung, [Mathematical modeling of the surface heat flux to simulate the thermal behavior of workpieces in dry machining], PhD thesis, University Karlsruhe (TH) (in German)Google Scholar
  32. Pabst R, Fleischer J, Michna J (2010) Modelling of the heat input for face-milling processes. Ann CIRP 59(1):121–124CrossRefGoogle Scholar
  33. Pandey C, Shan HS (1972) Analysis of cutting forces in peripheral and face milling operations. Int J Prod Res 10(4):370–391CrossRefGoogle Scholar
  34. Patel KM, Joshi SS (2005) Mechanics of machining of face-milling operation performed using a self-propelled round insert milling cutter. J Mater Process Technol 171:68–76CrossRefGoogle Scholar
  35. Peters J et al (2001) Contribution of CIRP to the development of metrology and surface quality evaluation during the last fifty years. Ann CIRP 50(2):471–488CrossRefGoogle Scholar
  36. Pitallà GM, Monno M (2010) 3D finite element modeling of face milling of continuous chip material. Int J Adv Manuf Technol 47:543–555CrossRefGoogle Scholar
  37. Rüeg A, Gygax P (1992) A generalized kinematics model for three- to five-axis milling machines and their implementation in a CNC. CIRP Ann Manuf Technol 41(1):547–550CrossRefGoogle Scholar
  38. Ruzhong Z, Wang KK (1983) Modelling of cutting force pulsation in face-milling. Ann ClRP 32(1):21–26CrossRefGoogle Scholar
  39. Sadeghinia H, Razfar MR, Takabi J (2007) 2D finite element modeling of face milling with damage effects. In: 3rd WSEAS international conference on applied and theoretical mechanics, Spain, pp 145–150Google Scholar
  40. Saglam H (2011) Tool wear monitoring in bandsawing using neural networks and Taguchi’s design of experiments. Int J Adv Manuf Technol 55:969–982CrossRefGoogle Scholar
  41. Schulze V, Becke C (2011) Analysis of machining strategies for fiber reinforced plastics with regard to process force direction. Proc Eng 19:312–317CrossRefGoogle Scholar
  42. Schulze V, Pabst R, Michna J (2008) Modelling the heat flux as an input parameter to simulate cutting processes. In Heigel JC, Moylan SP, Ivester RW, Proceedings of the 11th CIRP Conference on Modeling of Machining Operations, pp 155–162, Gaithersburg, MD USA, Sep 16.-18Google Scholar
  43. Schulze V, Pabst R, Michna J (2009a) Modeling of the heat input for the face-milling of EN-GJL-250. In Mondragon Unibertsitateko Zerbitzu Ed., 12th CIRP Conference on Modeling of Machining Operations, Vol 1:243–248, San Sebastian, ES, May 7.-8Google Scholar
  44. Schulze V, Michna J, Pabst R, Hauer Th (2009b) Thermische Belastung beim Stirnplanfräsen [Investigation on the thermal load during end-face milling], In: wt Werkstattstechnik online, Jahrgang 99, Heft 4, Springer-VDI-Verlag GmbH & Co.KG, pp 281–286 (in German)Google Scholar
  45. Schulze V, Michna J, Pabst R, Hauer T (2009c) Simulation des Wärmeeintrags verbessert Toleranztreue bei der Trockenbearbeitung [Simulation of the heat input for improved tolerance accuracies in dry machining], In: MM Maschinenmarkt, Ausgabe 13, pp 26–28 (in German)Google Scholar
  46. Schulze V, Spomer W, Becke C (2012) A voxel-based kinematic simulation model for force analyses of complex milling operations such as wobble milling. Prod Eng 6(1):1–9CrossRefGoogle Scholar
  47. Surmann T, Biermann D (2008) The effect of tool vibrations on the flank surface created by peripheral milling. CIRP Ann Manuf Technol 57(1):375–378CrossRefGoogle Scholar
  48. Surmann T, Enk D (2007) Simulation of milling tool vibration trajectories along changing engagement conditions. Int J Mach Tools Manuf 47(9):1442–1448CrossRefGoogle Scholar
  49. Surmann T, Krebs E (2012) Optimization of micromilling by adjustment of inclination angles. Procedia CIRP 2:87–91CrossRefGoogle Scholar
  50. Tapoglou N, Antoniadis A (2012) 3-Dimensional kinematics simulation of face milling. Measurement 45:1396–1405CrossRefGoogle Scholar
  51. van Luttervelt CA, Childs THC, Jawahir IS, Klocke F, Venuvinod PK, Altintas Y, Armarego E, Dornfeld D, Grabec I, Leopold J, Lindstrom B, Lucca D, Shirakashi OT, Sato H (1998) Present situation and future trends in modelling of machining operations progress report of the CIRP working group ‘modelling of machining operations’. CIRP Ann Manuf Technol 47(2):587–626CrossRefGoogle Scholar
  52. Young H-T, Mathew P, Oxley PLB (1993) Predicting cutting forces in face milling. Int J Mach Tools Manuf 34(6):771–783CrossRefGoogle Scholar
  53. Zheng HQ, Li XP, Wong YS, Nee AYC (1999) Theoretical modelling and simulation of cutting forces in face milling with cutter runout. Int J Mach Tools Manuf 39:2003–2018CrossRefGoogle Scholar

Copyright information

© CIRP 2018

Authors and Affiliations

  1. 1.Institute of Production Science (wbk) und Institute for Applied Materials (IAM-WK)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Section editors and affiliations

  • Garret O'Donnell
    • 1
  1. 1.Trinity College DublinDublinIreland