Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

Electron Transfer in Catalases and Catalase-Peroxidases

  • Anabella Ivancich
  • Peter C. Loewen
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_51-1

Definition

Catalases (EC 1.11.1.6) are enzymes that catalyze the disproportionation of hydrogen peroxide into water and molecular oxygen by means of a heme iron or a dimanganese active site. They are crucial metalloproteins regulating the cellular concentration of hydrogen peroxide, which has a concentration-dependent dual role in cell signaling and oxidative stress.

Catalase-peroxidases, also named KatGs from the encoding katG gene, are heme-containing oxidoreductases capable of both the disproportionation of hydrogen peroxide and the oxidation of substrates via high-valent heme intermediates. KatGs also generate superoxide via an oxidase reaction and activate the antitubercular prodrug isoniazid (INH) through its conversion to isonicotinyl-NAD.

Basic Characteristics

Catalases are protective enzymes that efficiently decompose H 2O 2 into H 2O and O 2. They fall in three distinct phylogenetic groups: heme monofunctional catalases, heme catalase-peroxidases, and manganese catalases. The...
This is a preview of subscription content, log in to check access.

References

  1. Colin J (2008) PhD thesis: Mise en évidence, par spectroscopies de Résonance Paramagnétique Electronique et d’absorption électronique UV-visible, de la formation de radicaux Tryptophanyles et Tyrosyles par transfert d’électron intramoléculaire vers l’hème dans les catalases monofonctionnelles et peroxydases bifonctionnelles. Sciences Pharmaceutiques. Université Pierre et Marie Curie – Paris VI. Français. HAL id: tel-00326339Google Scholar
  2. Colin J, Wiseman B, Switala J, Loewen PC, Ivancich A (2009) Distinct role of specific tryptophans in facilitating electron transfer or as [FeIV=O Trp] intermediates in the peroxidase reaction of Burkholderia pseudomallei catalase-peroxidase: a multifrequency EPR spectroscopy investigation. J Am Chem Soc 131:8557–8563CrossRefPubMedGoogle Scholar
  3. Gray HB, Winkler J (2015) Hole hopping through tyrosine/tryptophan chains protects proteins from oxidative damage. Proc Natl Acad Sci U S A 112:10920–10925CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ivancich A, Mattioli TA, Un S (1999) Effect of protein microenvironment on tyrosyl radicals. A high-field (285 GHz) EPR, resonance Raman, and hybrid density functional study. J Am Chem Soc 121:5743–5753CrossRefGoogle Scholar
  5. Ivancich A, Jakopitsch C, Auer M, Un S, Obinger C (2003) Protein-based radicals in the catalase-peroxidase of Synechocystis PCC6803: a multifrequency EPR investigation of wild-type and variants on the environment of the heme active site. J Am Chem Soc 125:14093–14102CrossRefPubMedGoogle Scholar
  6. Ivancich A, Donald LJ, Villanueva J, Wiseman B, Fita I, Loewen PC (2013) Spectroscopic and kinetic investigation of the reactions of peroxyacetic acid with Burkholderia pseudomallei catalase-peroxidase KatG. Biochemistry 52:7271–7282CrossRefPubMedGoogle Scholar
  7. Kirkman HN, Gaetani GF (2006) Mammalian catalase: a venerable enzyme with new mysteries. Trends Biochem Sci 32:44–50CrossRefPubMedGoogle Scholar
  8. Kruft BI, Magliozzo RS, Jarzęcki AA (2015) Density functional theory insights into the role of the methionine-tyrosine-tryptophan adduct radical in the KatG catalase reaction: O2 release from the oxyheme intermediate. J Phys Chem A 119:6850–6866CrossRefPubMedGoogle Scholar
  9. Loewen PC, Carpena X, Vidossich P, Fita I, Rovira C (2014) An ionizable active-site tryptophan imparts catalase activity to a peroxidase core. J Am Chem Soc 136:7249–7252CrossRefPubMedGoogle Scholar
  10. Loewen PC, Villanueva J, Switala J, Donald LJ, Ivancich A (2015) Unprecedented access of phenolic substrates to the hem active site of a catalase: substrate binding and peroxidase-like reactivity of Bacillus pumilus catalase monitored by X-ray crystallography and EPR spectroscopy. Prot Sci 83:853–866Google Scholar
  11. Nicholls P, Fita I, Loewen PC (2001) Enzymology and structure of catalases. Adv Inorg Chem 51:51–106CrossRefGoogle Scholar
  12. Njuma OJ, Davis I, Ndontsa EN, Krewall JR, Liu A, Goodwin DC (2017) Mutual synergy between catalase and peroxidase activities of the bifunctional enzyme KatG is facilitated by electron-hole hopping within the enzyme. J Biol Chem 292:18408–18421CrossRefPubMedGoogle Scholar
  13. Olson LP, Bruice TC (1995) Electron tunneling and ab initio calculations related to the one-electron oxidation of NAD(P)H bound to catalase. Biochemistry 34:7335–7347CrossRefPubMedGoogle Scholar
  14. Page CC, Moser CC, Chen X, Dutton PL (1999) Natural engineering principles of electron tunneling in biological oxidation-reduction. Nature 402:47–52CrossRefPubMedGoogle Scholar
  15. Singh R, Wiseman B, Deemagarn T, Donald LJ, Duckworth HW, Carpena X, Fita I, Loewen PC (2004) Catalase-peroxidases (KatG) exhibit NADH oxidase activity. J Biol Chem 279:43098–43106CrossRefPubMedGoogle Scholar
  16. Singh R, Switala J, Loewen PC, Ivancich A (2007) Two [FeIV = O Trp] intermediates in M. tuberculosis catalase-peroxidase discriminated by multifrequency (9–285 GHz) EPR spectroscopy: reactivity toward isoniazid. J Am Chem Soc 129:15954–15963CrossRefPubMedGoogle Scholar
  17. Sicking W, Korth H-G, de Groot H, Sustmann R (2008) On the functional role of a water molecule in clade 3 catalases: a proposal for the mechanism by which NADPH prevents the formation of compound II. J Am Chem Soc 130:7345–7356CrossRefPubMedGoogle Scholar
  18. Smith AT, Doyle WA, Dorlet P, Ivancich A (2009) Spectroscopic evidence for an engineered, catalytically active Trp radical that creates the unique reactivity of lignin peroxidase. Proc Natl Acad Sci U S A 166:16084–16089CrossRefGoogle Scholar
  19. Wagenack NL, Hoard HM, Rusnak F (1999) Isoniazid oxidation by Mycobacterium tuberculosis KatG: a role for superoxide which correlates fit isoniazid susceptibility. J Am Chem Soc 121:97480–97449Google Scholar
  20. Wiseman B, Carpena X, Feliz M, Donald LJ, Pons M, Fita I, Loewen PC (2010) Isonicotinic acid hydrazide (INH) conversion to isonicotinyl-NAD by catalase-peroxidases. J Biol Chem 285:26662–26673CrossRefPubMedPubMedCentralGoogle Scholar
  21. Zhao X, Suarez J, Khajo A, Yu S, Metlitsky L, Magliozzo RS (2010) A radical on the Met-Tyr-Trp modification required for catalase activity in catalase-peroxidase is established by isotopic labeling and site-directed mutagenesis. J Am Chem Soc 132:8268–8269CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© European Biophysical Societies' Association (EBSA) 2018

Authors and Affiliations

  1. 1.Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR 7281)Aix-Marseille University, Centre National de la Recherche Scientifique (CNRS)MarseilleFrance
  2. 2.Department of MicrobiologyUniversity of ManitobaWinnipegCanada