Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

Atomic Force Microscopy (AFM) for Topography and Recognition Imaging at Single-Molecule Level

  • Memed Duman
  • Yoo Jin Oh
  • Rong Zhu
  • Michael Leitner
  • Andreas Ebner
  • Peter Hinterdorfer
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_496-1

Synonyms

Definition

High-resolution atomic force microscopy (AFM) topography has become a powerful bioanalytical tool when utilized for single-molecule force spectroscopy or simultaneous “topography and recognition imaging” (TREC). These modes allow for mapping of specific ligand-binding sites on biological samples under physiological conditions with nanometer resolution.

Introduction

Atomic force microcopy (AFM) is a version of scanning probe microscopy (SPM) that is extensively used in life sciences because it can be operated in physiological salt solution. In AFM imaging, a sharp probe tip mounted on a microcantilever scans over the specimen line by line, whereby the topographic image of the sample surface is generated by “feeling” rather than “looking.” Tips with high sharpness provide high resolution, and cantilevers with low spring constants allow precise control of the forces between tip and sample....
This is a preview of subscription content, log in to check access.

References

  1. Beaussart A, Baker AE, Kuchma SL, El-Kirat-Chatel S, O’Toole GA, Dufrene YF (2014) Nanoscale adhesion forces of Pseudomonas aeruginosa type IV pPili. ACS Nano 8:10723–10733CrossRefGoogle Scholar
  2. Bhushan B, Marti O (2010) Scanning probe microscopy-principle of operation, instrumentation, and probes. In: Bhushan B (ed) Handbook of nanotechnology, 3rd edn. Springer, Heidelberg, pp 573–617CrossRefGoogle Scholar
  3. Dufrêne YF (2015) Sticky microbes: forces in microbial cell adhesion. Trends Microbiol 23:376–382CrossRefGoogle Scholar
  4. Duman M, Chtcheglova LA, Zhu R, Bozna BL, Polzella P, Cerundolo V, Hinterdorfer P (2013) Nanomapping of CD1d-glycolipid complexes on THP1 cells by using simultaneous topography and recognition imaging. J Mol Recognit 26:408–414CrossRefGoogle Scholar
  5. Ebner A, Wildling L, Kamruzzahan ASM, Rankl C, Wruss J, Hahn CD, Hölzl M, Zhu R, Kienberger F, Blaas D, Hinterdorfer P, Gruber HJ (2007) A new, simple method for linking of antibodies to atomic force microscopy tips. Bioconjugate Chemistry 18: 1176–1184CrossRefGoogle Scholar
  6. Ebner A, Wildling L, Zhu R, Rankl C, Haselgrubler T, Hinterdorfer P, Gruber HJ (2008) Functionalization of probe tips and supports for single-molecule recognition force microscopy. Top Curr Chem 285:29–76CrossRefGoogle Scholar
  7. Florin EL, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264:415–417CrossRefGoogle Scholar
  8. Francis LW, Lewis PD, Wright CJ, Conlan RS (2009) Atomic force microscopy comes of age. Biol Cell 102:133–143PubMedGoogle Scholar
  9. Han W, Lindsay SM, Jing TW (1996) A magnetically driven oscillating probe microscope for operation in liquids. Appl Phys Lett 69:4111–4113CrossRefGoogle Scholar
  10. Han W, Lindsay SM, Dlakic M, Harrington RE (1997) Kinked DNA. Nature 386:563CrossRefGoogle Scholar
  11. Hinterdorfer P, Dufrene YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Meth 3:347–355CrossRefGoogle Scholar
  12. Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H (1996) Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci 93:3477–3481CrossRefGoogle Scholar
  13. Horber JK, Miles MJ (2003) Scanning probe evolution in biology. Science 302:1002–1005CrossRefGoogle Scholar
  14. Lee GU, Chrisey LA, Colton RJ (1994) Direct measurement of the forces between complementary strands of DNA. Science 266:771–773CrossRefGoogle Scholar
  15. Leitner M, Stock LG, Traxler L, Leclercq L, Bonazza K, Friedbacher G, Cottet H, Stutz H, Ebner A (2016) Mapping molecular adhesion sites inside SMIL coated capillaries using atomic force microscopy recognition imaging. Anal Chim Acta 930:39–48CrossRefGoogle Scholar
  16. Leitner M, Poturnayova A, Lamprecht C, Weich S, Snejdarkova M, Karpisova I, Hianik T, Ebner A (2017) Characterization of the specific interaction between the DNA aptamer sgc8c and protein tyrosine kinase-7 receptors at the surface of T-cells by biosensing AFM. Anal Bioanal Chem 409:2767–2776CrossRefGoogle Scholar
  17. Lewis WG, Magallon FG, Fokin VV, Finn M (2004) Discovery and characterization of catalysts for azide− alkyne cycloaddition by fluorescence quenching. J Am Chem Soc 126:9152–9153CrossRefGoogle Scholar
  18. Muller DJ (2008) AFM: a nanotool in membrane biology. Biochemistry 47:7986–7998CrossRefGoogle Scholar
  19. Oh YJ, Brenner MH, Gruber HJ, Cui Y, Traxler L, Siligan C, Park S, Hinterdorfer P (2016) Curli mediate bacterial adhesion to fibronectin via tensile multiple bonds. Sci Rep 6:33909CrossRefGoogle Scholar
  20. Putman CAJ, Van der Werf KO, De Grooth BG, Van Hulst NF, Greve J (1994) Tapping mode atomic force microscopy in liquid. Appl Phys Lett 64:2454–2456CrossRefGoogle Scholar
  21. Raab A, Han W, Badt D, Smith-Gill SJ, Lindsay SM, Schindler H, Hinterdorfer P (1999) Antibody recognition imaging by force microscopy. Nat Biotechnol 17:901–905CrossRefGoogle Scholar
  22. Stroh CM, Ebner A, Geretschlager M, Freudenthaler G, Kienberger F, Kamruzzahan AS, Smith-Gill SJ, Gruber HJ, Hinterdorfer P (2004a) Simultaneous topography and recognition imaging using force microscopy. Biophys J 87:1981–1990CrossRefGoogle Scholar
  23. Stroh CM, Wang H, Bash R, Ashcroft B, Nelson J, Gruber H, Lohr D, Lindsay SM, Hinterdorfer P (2004b) Single-molecule recognition imaging microscopy. Proc Natl Acad Sci U S A 101:12503–12507CrossRefGoogle Scholar
  24. You HX, Lau JM, Zhang S, Yu L (2000) Atomic force microscopy imaging of living cells: a preliminary study of the disruptive effect of the cantilever tip on cell morphology. Ultramicroscopy 82:297–305CrossRefGoogle Scholar
  25. Zhu R, Sinwel D, Hasenhuetl PS, Saha K, Kumar V, Zhang P, Rankl C, Holy M, Sucic S, Kudlacek O, Karner A, Sandtner W, Stockner T, Gruber HJ, Freissmuth M, Newman AH, Sitte HH, Hinterdorfer P (2016) Nanopharmacological force sensing to reveal allosteric coupling in transporter binding sites. Angew Chem 55:1719–1722CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association (EBSA) 2018

Authors and Affiliations

  • Memed Duman
    • 1
    • 2
  • Yoo Jin Oh
    • 1
  • Rong Zhu
    • 1
  • Michael Leitner
    • 1
  • Andreas Ebner
    • 1
  • Peter Hinterdorfer
    • 1
  1. 1.Institute for BiophysicsJohannes Kepler University of LinzLinzAustria
  2. 2.Institute of Science, Nanotechnology and Nanomedicine DivisionHacettepe UniversityAnkaraTurkey

Section editors and affiliations

  • Nils G. Walter
    • 1
  1. 1.Department of ChemistryThe University of MichiganAnn ArborUSA