Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

Anti-Brownian Traps

  • Allison H. Squires
  • Adam E. Cohen
  • W. E. Moerner
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_486-1

Synonyms

Introduction

Brownian motion is typically considered an inescapable attribute of small particles in free solution. This random jiggling often impedes or prohibits optical studies of the behavior of nanometer-sized objects, such as single biomolecules, because such objects quickly diffuse away from the observation region. The rate of diffusion increases with decreasing particle size, so the window of opportunity for measuring small particles is very short. Anti-Brownian traps address this challenge by partially suppressing Brownian motion: the position of a single particle is monitored, and active feedback is used to apply forces that directly counteract the observed displacements. This process confines the particle to a small region of interest (ROI), enabling extended study without surface attachment or encapsulation, both of which could perturb the particle’s behavior. A powerful single-molecule method, anti-Brownian traps have been used to...
This is a preview of subscription content, log in to check access.

References

  1. Armani MD, Chaudhary SV, Probst R et al (2006) Using feedback control of microflows to independently steer multiple particles. J MEMS 15:945–956CrossRefGoogle Scholar
  2. Banterle N, Lemke EA (2016) Nanoscale devices for linkerless long-term single-molecule observation. Curr Opin Biotechnol 39:105–112CrossRefPubMedGoogle Scholar
  3. Berglund AJ, Mabuchi H (2004) Feedback controller design for tracking a single fluorescent molecule. Appl Phys B Lasers Opt 78:653–659CrossRefGoogle Scholar
  4. Berglund AJ, Mabuchi H (2005) Tracking-FCS: fluorescence correlation spectroscopy of individual particles. Opt Express 13:8069–8082CrossRefPubMedGoogle Scholar
  5. Berglund AJ, McHale K, Mabuchi H (2007) Feedback localization of freely diffusing fluorescent particles near the optical shot-noise limit. Opt Lett 32:145–147CrossRefPubMedGoogle Scholar
  6. Bockenhauer S, Moerner WE (2013) Photo-induced conformational flexibility in single solution-phase peridinin-chlorophyll-proteins. J Phys Chem A 117:8399–8406CrossRefPubMedGoogle Scholar
  7. Bockenhauer S, Fuerstenberg A, Yao JY et al (2011) Conformational dynamics of single G protein-coupled receptors in solution. J Phys Chem B 115:13328–13338CrossRefPubMedPubMedCentralGoogle Scholar
  8. Braun M, Cichos F (2013) Optically controlled thermophoretic trapping of single nano-objects. ACS Nano 7(12):11200–11208CrossRefPubMedGoogle Scholar
  9. Cang H, Wong CM, Xu CS et al (2006) Confocal three dimensional tracking of a single nanoparticle with concurrent spectroscopic readouts. Appl Phys Lett 88:223901CrossRefGoogle Scholar
  10. Cang H, Xu CS, Montiel D et al (2007) Guiding a confocal microscope by single fluorescent nanoparticles. Opt Lett 32:2729–2731CrossRefPubMedGoogle Scholar
  11. Cang H, Montiel D, Xu CS et al (2008) Observation of spectral anisotropy of gold nanoparticles. J Chem Phys 129:044503–1–044503–5CrossRefGoogle Scholar
  12. Cohen AE, Moerner WE (2005) Method for trapping and manipulating nanoscale objects in solution. Appl Phys Lett 86:093109CrossRefGoogle Scholar
  13. Cohen AE, Moerner WE (2007) Principal-components analysis of shape fluctuations of single DNA molecules. Proc Natl Acad Sci U S A 104(31):12622–12627.  https://doi.org/10.1073/pnas.0610396104ERCrossRefPubMedPubMedCentralGoogle Scholar
  14. Cohen AE, Moerner WE (2008) Controlling Brownian motion of single protein molecules and single fluorophores in aqueous buffer. Opt Express 16:6941–6956CrossRefPubMedPubMedCentralGoogle Scholar
  15. Enderlein J (2000) Tracking of fluorescent molecules diffusing within membranes. Appl Phys B Lasers Opt 71:773–777CrossRefGoogle Scholar
  16. Fields AP, Cohen AE (2010) Anti-Brownian traps for studies on single molecules. Methods Enzymol 475:149–174.  https://doi.org/10.1016/s0076-6879(10)75007-2CrossRefGoogle Scholar
  17. Fields AP, Cohen AE (2011) Electrokinetic trapping at the one nanometer limit. Proc Natl Acad Sci U S A 108:8937–8942CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fields AP, Cohen AE (2012) Optimal tracking of a Brownian particle. Opt Express 20:22589–22601CrossRefGoogle Scholar
  19. Goldsmith RH, Moerner WE (2010) Watching conformational- and photodynamics of single fluorescent proteins in solution. Nat Chem 2(3):179–186.  https://doi.org/10.1038/NCHEM.545ERCrossRefPubMedPubMedCentralGoogle Scholar
  20. Goldsmith RH, Tabares LC, Kostrz D et al (2011) Redox cycling and kinetic analysis of single molecules of solution-phase nitrite reductase. Proc Natl Acad Sci U S A 108:17269–17274CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jiang Y, Douglas NR, Conley NR et al (2011) Sensing cooperativity in ATP hydrolysis for single multisubunit enzymes in solution. Proc Natl Acad Sci U S A 108:16962–16967CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jun Y, Bechhoefer J (2012) Virtual potentials for feedback traps. Phys Rev E 86(6):061106CrossRefGoogle Scholar
  23. Jun Y, Gavrilov M, Bechhoefer J (2014) High-precision test of Landauer’s principle in a feedback trap. Phys Rev Lett 113:190601CrossRefPubMedGoogle Scholar
  24. Kayci M, Chang H, Radenovic A (2014) Electron spin resonance of nitrogen-vacancy defects embedded in single nanodiamonds in an ABEL trap. Nano Lett 14(9):5335–5341CrossRefPubMedGoogle Scholar
  25. King JK, Canfield BK, Davis LM (2013) Three-dimensional anti-Brownian electrokinetic trapping of a single nanoparticle in solution. Appl Phys Lett 103(4):043102.  https://doi.org/10.1063/1.4816325.CrossRefGoogle Scholar
  26. Lessard GA, Goodwin PM, Werner JH (2007) Three-dimensional tracking of individual quantum dots. Appl Phys Lett 91(22):224106–224103CrossRefGoogle Scholar
  27. Levi V, Ruan QQ, Gratton E (2005) 3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells. Biophys J 88(4):2919–2928CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lu PJ, Sims PA, Oki H et al (2007) Target-locking acquisition with real-time confocal (TARC) microscopy. Opt Express 15(14):8702–8712CrossRefPubMedGoogle Scholar
  29. Ropp C, Probst R, Cummins Z et al (2010) Manipulating quantum dots to nanometer precision by control of flow. Nano Lett 10(7):2525–2530CrossRefPubMedGoogle Scholar
  30. Schlau-Cohen GS, Wang Q, Southall J et al (2013) Single-molecule spectroscopy reveals photosynthetic LH2 complexes switch between emissive states. Proc Natl Acad Sci U S A 110:10899–10903CrossRefPubMedPubMedCentralGoogle Scholar
  31. Schlau-Cohen GS, Bockenhauer S, Wang Q et al (2014) Single-molecule spectroscopy of photosynthetic proteins in solution: exploration of structure–function relationships. Chem Sci 5:2933–2939CrossRefGoogle Scholar
  32. Schlau-Cohen G, Yang H, Krueger TPJ et al (2015) Single-molecule identification of quenched and unquenched states of LHCII. J Phys Chem Lett 6(5):860–867.  https://doi.org/10.1021/acs.jpclett.5b00034CrossRefPubMedGoogle Scholar
  33. Squires AH, Moerner WE (2017) Direct single-molecule measurements of phycocyanobilin photophysics in monomeric C-phycocyanin. Proc Natl Acad Sci U S A 114(37):9779–9784.  https://doi.org/10.1073/pnas.1705435114CrossRefPubMedPubMedCentralGoogle Scholar
  34. Tanyeri M, Ranka M, Sittipolkul N et al (2011) A microfluidic-based hydrodynamic trap: design and implementation. Lab Chip 11(10):1786–1794CrossRefPubMedPubMedCentralGoogle Scholar
  35. Wang Q, Moerner WE (2010) Optimal strategy for trapping single fluorescent molecules in solution using the ABEL trap. Appl Phys B Lasers Opt 99:23–30CrossRefGoogle Scholar
  36. Wang Q, Moerner WE (2012) Lifetime and spectrally resolved characterization of the photodynamics of single fluorophores in solution using the anti-Brownian electrokinetic trap. J Phys Chem B 117:4641–4648CrossRefPubMedPubMedCentralGoogle Scholar
  37. Wang Q, Moerner WE (2014) Single-molecule motions enable direct visualization of biomolecular interactions in solution. Nat Methods 11:555–558CrossRefGoogle Scholar
  38. Wang Q, Moerner WE (2015) Dissecting pigment architecture of individual photosynthetic antenna complexes in solution. Proc Natl Acad Sci U S A 112:13880–13885.  https://doi.org/10.1073/pnas.1514027112CrossRefPubMedPubMedCentralGoogle Scholar
  39. Wang Q, Goldsmith RH, Jiang Y et al (2012) Probing single biomolecules in solution using the anti-Brownian electrokinetic (ABEL) trap. Acc Chem Res 45:1955–1964.  https://doi.org/10.1021/ar200304tCrossRefPubMedPubMedCentralGoogle Scholar
  40. Wells NP, Lessard GA, Goodwin PM et al (2010) Time-resolved three-dimensional molecular tracking in live cells. Nano Lett 10(11):4732–4737CrossRefPubMedPubMedCentralGoogle Scholar
  41. Welsher K, Yang H (2014) Multi-resolution 3D visualization of the early stages of cellular uptake of peptide-coated nanoparticles. Nat Nanotechnol 9(3):198–203CrossRefPubMedGoogle Scholar

Copyright information

© European Biophysical Societies' Association (EBSA) 2018

Authors and Affiliations

  • Allison H. Squires
    • 1
  • Adam E. Cohen
    • 2
  • W. E. Moerner
    • 1
  1. 1.Department of ChemistryStanford UniversityStanfordUSA
  2. 2.Departments of Chemistry and Chemical Biology and PhysicsHarvard UniversityCambridgeUSA

Section editors and affiliations

  • Nils G. Walter
    • 1
  1. 1.Department of ChemistryThe University of MichiganAnn ArborUSA