Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

US-SOMO: Methods for Construction and Hydration of Macromolecular Hydrodynamic Models

Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_292-1



Macromolecular hydrodynamics concerns the measurement of biophysical parameters that describe the conformation of large biopolymers in solution; modeling of these parameters permits the testing of putative structural models.


The hydrodynamics of biomacromolecules (e.g., proteins, nucleic acids, polysaccharides), as described by observables such as the translational diffusion coefficient (Dynamic Light Scattering), sedimentation coefficient (Sedimentation Velocity Analytical Ultracentrifugation), rotational relaxation time (NMR, Fluorescence Spectroscopy), and (Intrinsic Viscosity), can be measured accurately. However, the interpretation of these parameters in terms of solution macromolecular structure is not a straightforward task. This entry concerns a method for the construction of bead models to permit the computation of hydrodynamic (and related) parameters.

Bead modeling methods were pioneered in the late 1960s–early...

This is a preview of subscription content, log in to check access.


  1. Aragon S (2004) A precise boundary element method for macromolecular transport properties. J Comput Chem 25:1191–1205CrossRefGoogle Scholar
  2. Aragon SR (2011) Recent advances in macromolecular hydrodynamic modeling. Methods 54:101–114CrossRefGoogle Scholar
  3. Brookes E, Rocco M (2016) Calculation of hydrodynamic parameters – US-SOMO. In: Uchiyama S, Arisaka F, Stafford WFIII, Laue TM (eds) Analytical ultracentrifugation: instrumentation, software and application, chapter, vol 10. Springer, New York, pp 169–193CrossRefGoogle Scholar
  4. Brookes E, Rocco M (2018) Recent advances in the UltraScan Solution MOdeller (US-SOMO) hydrodynamic and small-angle scattering data analysis and simulation suite. Eur Biophys J 47:855–864CrossRefGoogle Scholar
  5. Brookes E, Demeler B et al (2010a) Developments in the US-SOMO bead modeling suite: new features in the direct residue-to-bead method, improved grid routines, and influence of accessible surface area screening. Macromol Biosci 10(7):746–753CrossRefGoogle Scholar
  6. Brookes E, Demeler B et al (2010b) The implementation of SOMO (SOlution MOdeller) in the UltraScan analytical ultracentrifugation data analysis suite: enhanced capabilities allow the reliable hydrodynamic modeling of virtually any kind of biomacromolecule. Eur Biophys J Biophys Lett 39(3):423–435CrossRefGoogle Scholar
  7. Brookes E, Perez J, Cardinali B, Profumo A, Vachette P, Rocco M (2013) Fibrinogen species as resolved by HPLC-SAXS data processing within the UltraScan Solution Modeler (US-SOMO) enhanced SAS module. J Appl Crystallogr 46:1823–1833CrossRefGoogle Scholar
  8. Brookes E, Vachette P, Rocco M, Perez J (2016) US-SOMO HPLC-SAXS module: dealing with capillary fouling and extraction of pure component patterns from poorly resolved SEC-SAXS data. J Appl Crystallogr 49:1827–1841CrossRefGoogle Scholar
  9. Byron O (1997) Construction of hydrodynamic bead models from high-resolution X-ray crystallographic or nuclear magnetic resonance data. Biophys J 72:408–415CrossRefGoogle Scholar
  10. Byron O (2008) Hydrodynamic modeling: the solution conformation of macromolecules and their complexes. In: Correia JJ, Detrich HW (eds) Methods in cell biology, vol 84. Academic, San Diego, pp 327–373Google Scholar
  11. Demeler B (2005) UltraScan a comprehensive data analysis software package for analytical ultracentrifugation experiments. In: Scott DJ, Harding SE, Rowe AJ (eds) Modern analytical ultracentrifugation: techniques and methods. Royal Society of Chemistry, Cambridge, UK, pp 210–229Google Scholar
  12. Ding F, Tsao D et al (2008) Ab initio folding of proteins with all-atom discrete molecular dynamics. Structure 16(7):1010–1018CrossRefGoogle Scholar
  13. Franke D, Svergun DI (2009) DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J Appl Crystallogr 42:342–346CrossRefGoogle Scholar
  14. García de la Torre J (1989) Hydrodynamic properties of macromolecular assemblies. In: Harding SE, Rowe AJ (eds) Dynamic properties of biomolecular assemblies. Royal Society of Chemistry, Cambridge, UK, pp 3–31Google Scholar
  15. García de la Torre J (2001) Hydration from hydrodynamics. General considerations and applications of bead modelling to globular proteins. Biophys Chem 93(2–3):159–170CrossRefGoogle Scholar
  16. García de la Torre J, Bloomfield VA (1981) Hydrodynamic properties of complex rigid biological macromolecules: theory and applications. Q Rev Biophys 14(1):81–139CrossRefGoogle Scholar
  17. García de la Torre J, Huertas ML et al (2000) Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys J 78:719–730CrossRefGoogle Scholar
  18. García de la Torre J, Hernandez Cifre JG et al (2009) SIMUFLEX: algorithms and tools for simulation of the conformation and dynamics of flexible molecules and nanoparticles in dilute solution. J Chem Theory Comput 5:2606–2618CrossRefGoogle Scholar
  19. Gerstein M, Chothia C (1996) Packing at the protein-water interface. Proc Natl Acad Sci USA 93(19):10167–10172CrossRefGoogle Scholar
  20. Halle B, Davidovic M (2003) Biomolecular hydration: from water dynamics to hydrodynamics. Proc Natl Acad Sci USA 100:12135–12140CrossRefGoogle Scholar
  21. Hansen S (2000) Bayesian estimation of hyperparameters for indirect Fourier transformation in small-angle scattering. J Appl Crystallogr 33:1415–1421CrossRefGoogle Scholar
  22. Hansen S (2014) Update for BayesApp: a web site for analysis of small-angle scattering data. J Appl Crystallogr 47:1469–1471CrossRefGoogle Scholar
  23. Juba D, Audus DJ, Mascagni M, Douglas JF, Keyrouz W (2017) ZENO: software for calculating hydrodynamic, electrical, and shape properties of polymer and particle suspensions. J Res Natl Inst Stand Technol 122:1–2CrossRefGoogle Scholar
  24. Kang EH, Mansfield ML, Douglas JF (2004) Numerical path integration technique for the calculation of transport properties of proteins. Phys Rev E Stat Nonlinear Soft Mater Phys 69:031918CrossRefGoogle Scholar
  25. Kuntz ID, Kauzmann W (1974) Hydration of proteins and polypeptides. In: Anfinsen CB, Edsall JT, Richards FM (eds) Advances in protein chemistry, vol 28. Academic, New York, pp 239–345Google Scholar
  26. Mansfield ML, Douglas JF (2008) Improved path integration method for estimating the intrinsic viscosity of arbitrarily shaped particles. Phys Rev E Stat Nonlinear Soft Mater Phys. 78:046712CrossRefGoogle Scholar
  27. Nadassy K, Tomas-Oliveira I et al (2001) Standard atomic volumes in double-stranded DNA and packing in protein-DNA interfaces. Nucleic Acids Res 29(16):3362–3376CrossRefGoogle Scholar
  28. Perkins SJ (1986) Protein volumes and hydration effects: the calculation of partial specific volumes, neutron scattering matchpoints and 280 nm absorption coefficients for proteins and glycoproteins from amino acid sequences. Eur J Biochem 157:169–180CrossRefGoogle Scholar
  29. Rai N, Nöllmann M et al (2005) SOMO (SOlution MOdeler): differences between x-ray and NMR-derived bead models suggest a role for side chain flexibility in protein hydrodynamics. Structure 13:723–734CrossRefGoogle Scholar
  30. Rocco M, Byron O (2015) Computing translational diffusion and sedimentation coefficients: an evaluation of experimental data and programs. Eur Biophys J 44:417–431. (Erratum  https://doi.org/10.1007/s00249-015-1058-1)
  31. Spotorno B, Piccinini L et al (1997) BEAMS (BEAds modelling system): a set of computer programs for the generation, the visualisation and the computation of the hydrodynamic and conformational properties of bead models of proteins. Eur Biophys J 25(5/6):373–384. (Erratum 26:417)Google Scholar
  32. Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76(6):2879–2886CrossRefGoogle Scholar
  33. Svergun DI, Petoukhov MV, Koch MHJ (2001) Determination of domain structure of proteins from X-ray solution scattering. Biophys J 80:2946–2953CrossRefGoogle Scholar
  34. Tsai J, Taylor R et al (1999) The packing density in proteins: standard radii and volumes. J Mol Biol 290(1):253–266CrossRefGoogle Scholar
  35. Volkov VV, Svergun DI (2003) Uniqueness of ab-initio shape determination in small-angle scattering. J Appl Crystallogr 36:860–864CrossRefGoogle Scholar
  36. Voss NR, Gerstein M (2005) Calculation of standard atomic volumes for RNA and comparison with proteins: RNA is packed more tightly. J Mol Biol 346(2):477–492CrossRefGoogle Scholar
  37. Zuk PJ, Cichocki B, Szymczak P (2018) GRPY: an accurate bead method for calculation of hydrodynamic properties of rigid biomacromolecules. Biophys J 115:782–800CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Proteomics and Mass Spectrometry UnitIRCCS Ospedale Policlinico San Martino, Istituto Nazionale per la Ricerca sul CancroGenovaItaly
  2. 2.Department of Chemistry and BiochemistryUniversity of MontanaMissoulaUSA
  3. 3.School of Life Sciences, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK

Section editors and affiliations

  • Stephen E. Harding
    • 1
  • Mary K. Phillips-Jones
    • 2
  1. 1.School of Biosciences, NCMH LaboratoryUniversity of NottinghamSutton BoningtonUK
  2. 2.National Centre for Macromolecular HydrodynamicsUniversity of NottinghamSutton BoningtonUK