Skip to main content

MR Spectroscopy of the Liver

  • Living reference work entry
  • First Online:
Encyclopedia of Biophysics

Introduction

This contribution provides an overview of the status of liver magnetic resonance spectroscopy (MRS). The focus is laid on the assessment of lipid and energy metabolism and their metabolites observable by proton (1H), phosphorus (31P), and carbon (13C) MRS. Aspects of spectra acquisition, signal localization, and concentration quantification, as well as more advanced techniques including saturation transfer (ST) methods are discussed.

MRS is a non-invasive tool for the assessment of quantitative information about tissue specific and hepatic metabolism (Prompers et al. 2006; Krššák 2016; Valkovič et al. 2017a; Boesch and Kreis 2016; Sijens 2016). The liver is responsible for the metabolism of carbohydrates, lipids, and circulating proteins, and for detoxification of the body’s waste products. It is the largest organ within the human body and its anatomical position under the diaphragm close to the body surface makes it suitable for in vivo MRS experiments using either...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adriany G, Gruetter R (1997) A half-volume coil for efficient proton decoupling in humans at 4 Tesla. J Magn Reson 125(1):178–184

    Article  CAS  PubMed  Google Scholar 

  • Apps A et al (2021) Quantifying the effect of dobutamine stress on myocardial Pi and pH in healthy volunteers: a (31) P MRS study at 7T. Magn Reson Med 85(3):1147–1159

    Article  CAS  PubMed  Google Scholar 

  • Beckmann N et al (1993) Noninvasive observation of hepatic glycogen formation in man by 13C MRS after oral and intravenous glucose administration. Magn Reson Med 29(5):583–590

    Article  CAS  PubMed  Google Scholar 

  • Befroy DE et al (2013) Direct assessment of hepatic mitochondrial oxidative and anaplerotic fluxes in humans using dynamic C magnetic resonance spectroscopy. Nat Med

    Google Scholar 

  • Beiglbock H et al (2020) Effects of thyroid function on phosphodiester concentrations in skeletal muscle and liver: an in vivo NMRS study. J Clin Endocrinol Metab 105(12)

    Google Scholar 

  • Bluml S et al (2000) Novel peak assignments of in vivo (13)C MRS in human brain at 1.5 T. J Magn Reson 143(2):292–298

    Article  CAS  PubMed  Google Scholar 

  • Boesch C, Kreis R (2016) Muscle studies by 1H MRS. In: eMagRes, pp 1097–1108

    Chapter  Google Scholar 

  • Bogner W et al (2009) Assessment of (31)P relaxation times in the human calf muscle: a comparison between 3 T and 7 T in vivo. Magn Reson Med 62(3):574–582

    Article  CAS  PubMed  Google Scholar 

  • Bogner W et al (2011) In vivo 31P spectroscopy by fully adiabatic extended image selected in vivo spectroscopy: a comparison between 3 T and 7 T. Magn Reson Med 66(4):923–930

    Article  CAS  PubMed  Google Scholar 

  • Bottomley PA (2021) Methods of in vivo MRS, Roberts GCK and Watts A, editors. Springer Nature

    Google Scholar 

  • Bottomley PA, Hardy CJ (1992) Mapping creatine-kinase reaction-rates in human brain and heart with 4-Tesla saturation transfer P-31 NMR. J Magn Reson 99(2):443–448

    CAS  Google Scholar 

  • Brindle KM et al (1989) 31P NMR magnetization-transfer measurements of ATP turnover during steady-state isometric muscle contraction in the rat hind limb in vivo. Biochemistry 28(11):4887–4893

    Article  CAS  PubMed  Google Scholar 

  • Brown TR, Kincaid BM, Ugurbil K (1982) NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci U S A 79(11):3523–3526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchli R, Boesiger P (1993) Comparison of methods for the determination of absolute metabolite concentrations in human muscles by P-31 MRS. Magn Reson Med 30(5):552–558

    Article  CAS  PubMed  Google Scholar 

  • Buehler T, Kreis R, Boesch C (2015) Comparison of (31)P saturation and inversion magnetization transfer in human liver and skeletal muscle using a clinical MR system and surface coils. NMR Biomed 28(2):188–199

    Article  CAS  PubMed  Google Scholar 

  • Changani KK et al (1999) Improved preservation solutions for organ storage: a dynamic study of hepatic metabolism. Transplantation 68(3):345–355

    Article  CAS  PubMed  Google Scholar 

  • Changani KK et al (2001) Evidence for altered hepatic gluconeogenesis in patients with cirrhosis using in vivo 31-phosphorus magnetic resonance spectroscopy. Gut 49(4):557–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chmelík M et al (2008) Three-dimensional high-resolution magnetic resonance spectroscopic imaging for absolute quantification of 31P metabolites in human liver. Magn Reson Med 60(4):796–802

    Article  PubMed  Google Scholar 

  • Chmelík M et al (2013a) Flip-angle mapping of 31P coils by steady-state magnetic resonance spectroscopic imaging. J Magn Reson Imaging

    Google Scholar 

  • Chmelík M et al (2013b) Fully adiabatic 31P 2D-CSI with reduced chemical shift displacement error at 7T – GOIA-1D-ISIS/2D-CSI – goISICS. Magn Reson Med 69(5):1233–1244. https://doi.org/10.1002/mrm.24363. Epub 2012 Jun 19

  • Chmelík M et al (2014) In vivo (31)P magnetic resonance spectroscopy of the human liver at 7 T: an initial experience. NMR Biomed 27(4):478–485

    Article  PubMed  Google Scholar 

  • Chmelík M et al (2015) Phosphatidylcholine contributes to in vivo (31)P MRS signal from the human liver. Eur Radiol 25(7):2059–2066

    Article  PubMed  Google Scholar 

  • Clarke WT, Robson MD, Rodgers CT (2016) Bloch-Siegert B1+-mapping for human cardiac (31) P-MRS at 7 Tesla. Magn Reson Med 76(4):1047–1058

    Article  CAS  PubMed  Google Scholar 

  • Dagnelie PC et al (1992) Effect of L-alanine infusion on 31P nuclear magnetic resonance spectra of normal human liver: towards biochemical pathology in vivo. Clin Sci (Lond) 83(2):183–190

    Article  CAS  Google Scholar 

  • De Graaf RA (2007) In vivo NMR spectroscopy – principles and techniques, 2nd edn. John Wiley & Sons, Chichester

    Book  Google Scholar 

  • Dezortová M et al (2005) Etiology and functional status of liver cirrhosis by 31P MR spectroscopy. World J Gastroenterol 11(44):6926–6931

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon RM et al (1991) Abnormal phosphomonoester signals in 31P MR spectra from patients with hepatic lymphoma. A possible marker of liver infiltration and response to chemotherapy. Br J Cancer 63(6):953–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon RM et al (1992) 31P magnetic resonance spectroscopy detects a functional abnormality in liver metabolism after acetaminophen poisoning. Hepatology 16(4):943–948

    Article  CAS  PubMed  Google Scholar 

  • Dufour JF et al (1992) Alterations in hepatic fructose metabolism in cirrhotic patients demonstrated by dynamic 31phosphorus spectroscopy. Hepatology 15(5):835–842

    Article  CAS  PubMed  Google Scholar 

  • Fischbach F et al (2008) Quantitative proton magnetic resonance spectroscopy of the normal liver and malignant hepatic lesions at 3.0 Tesla. Eur Radiol 18(11):2549–2558

    Article  CAS  PubMed  Google Scholar 

  • From AH, Ugurbil K (2011) Standard magnetic resonance-based measurements of the Pi-->ATP rate do not index the rate of oxidative phosphorylation in cardiac and skeletal muscles. Am J Physiol Cell Physiol 301(1):C1–11

    Google Scholar 

  • Gajdošík M et al (2014) In vivo relaxation behavior of liver compounds at 7 Tesla, measured by single-voxel proton MR spectroscopy. J Magn Reson Imaging 40(6):1365–1374

    Article  PubMed  Google Scholar 

  • Gajdošík M et al (2015a) Ultrashort-TE stimulated echo acquisition mode (STEAM) improves the quantification of lipids and fatty acid chain unsaturation in the human liver at 7 T. NMR Biomed 28(10):1283–1293

    Article  PubMed  Google Scholar 

  • Gajdošík M et al (2015b) Localized 31P MRS reveals increased hepatic NADPH following 4 weeks of oral fructose challenge in healthy volunteers. In: 32nd annual scientific meeting of the ESMRMB. Edinburgh

    Google Scholar 

  • Gajdošík M et al (2021) INSPECTOR: free software for magnetic resonance spectroscopy data inspection, processing, simulation and analysis. Sci Rep 11(1):2094

    Article  PubMed  PubMed Central  Google Scholar 

  • Gruetter R et al (1994) Validation of 13C NMR measurements of liver glycogen in vivo. Magn Reson Med 31(6):583–588

    Article  CAS  PubMed  Google Scholar 

  • Gruetter R et al (1996) Broadband decoupled, 1H-localized 13C MRS of the human brain at 4 Tesla. Magn Reson Med 36(5):659–664

    Article  CAS  PubMed  Google Scholar 

  • Gruetter R et al (2003) Localized in vivo 13C NMR spectroscopy of the brain. NMR Biomed 16(6–7):313–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hájek M et al (2011) MR spectroscopy as a tool for in vivo determination of steatosis in liver transplant recipients. Magn Reson Mater Phys Biol Med 24(5):297–304

    Article  Google Scholar 

  • Hakumaki JM, Kauppinen RA (2000) 1H NMR visible lipids in the life and death of cells. Trends Biochem Sci 25(8):357–362

    Article  CAS  PubMed  Google Scholar 

  • Hamilton G et al (2009) Effect of PRESS and STEAM sequences on magnetic resonance spectroscopic liver fat quantification. J Magn Reson Imaging 30(1):145–152

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamilton G et al (2011) In vivo characterization of the liver fat (1)H MR spectrum. NMR Biomed 24(7):784–790

    Article  PubMed  Google Scholar 

  • Hernando D et al (2014) Quantification of liver iron with MRI: state of the art and remaining challenges. J Magn Reson Imaging 40(5):1003–1021

    Article  PubMed  PubMed Central  Google Scholar 

  • Hock A et al (2014) Navigator based respiratory gating during acquisition and preparation phases for proton liver spectroscopy at 3 T. NMR Biomed 27(3):348–355

    Article  CAS  PubMed  Google Scholar 

  • Johnson NA et al (2008) Noninvasive assessment of hepatic lipid composition: advancing understanding and management of fatty liver disorders. Hepatology 47(5):1513–1523

    Article  CAS  PubMed  Google Scholar 

  • Kim H et al (2008) Comparative MR study of hepatic fat quantification using single-voxel proton spectroscopy, two-point dixon and three-point IDEAL. Magn Reson Med 59(3):521–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klomp DW et al (2006) Sensitivity-enhanced 13C MR spectroscopy of the human brain at 3 Tesla. Magn Reson Med 55(2):271–278

    Article  CAS  PubMed  Google Scholar 

  • Kreis R, Ernst T, Ross BD (1993) Absolute quantitation of water and metabolites in the human brain. 2. metabolite concentrations. J Magn Reson B 102(1):9–19

    Article  CAS  Google Scholar 

  • Krššák M (2016) 13C MRS in human tissue. In: eMagRes, pp 1027–1038

    Chapter  Google Scholar 

  • Krššák M et al (2000) Intramuscular glycogen and intramyocellular lipid utilization during prolonged exercise and recovery in man: a 13C and 1H nuclear magnetic resonance spectroscopy study. J Clin Endocrinol Metab 85(2):748–754

    PubMed  Google Scholar 

  • Krššák M et al (2004) Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes 53(12):3048–3056

    Article  PubMed  Google Scholar 

  • Krssák M et al (2010) Non-invasive assessment of hepatic fat accumulation in chronic hepatitis C by 1H magnetic resonance spectroscopy. Eur J Radiol 74(3):e60–e66

    Article  PubMed  Google Scholar 

  • Laufs A et al (2014) Quantitative liver 31P magnetic resonance spectroscopy at 3T on a clinical scanner. Magn Reson Med 71(5):1670–1675

    Article  CAS  PubMed  Google Scholar 

  • Levitt MH, Freeman R (1981) Composite pulse decoupling. J Magn Reson 43:502–507

    CAS  Google Scholar 

  • Livingstone RS et al (2014) Initial clinical application of modified Dixon with flexible echo times: hepatic and pancreatic fat assessments in comparison with (1)H MRS. MAGMA 27(5):397–405

    Article  CAS  PubMed  Google Scholar 

  • Ljungberg M et al (2000) Extended ISIS sequences insensitive to T(1) smearing. Magn Reson Med 44(4):546–555

    Article  CAS  PubMed  Google Scholar 

  • Longo R et al (1993) Fatty infiltration of the liver. Quantification by 1H localized magnetic resonance spectroscopy and comparison with computed tomography. Investig Radiol 28(4):297–302

    Article  CAS  Google Scholar 

  • Loring J et al (2016) Whole-body radiofrequency coil for (31) P MRSI at 7 T. NMR Biomed 29(6):709–720

    CAS  PubMed  Google Scholar 

  • Magnusson I et al (1994) Liver glycogen turnover in fed and fasted humans. AmJPhysiol 266(5 Pt 1):E796–E803

    CAS  Google Scholar 

  • Meyerspeer M, Kemp G (2021) P-31 MR spectroscopy in skeletal muscle. In: Roberts GCK, Watts A (eds) Encyclopedia of biophysics. Springer Nature

    Google Scholar 

  • Meyerspeer M et al (2014) An improved trap design for decoupling multinuclear RF coils. Magn Reson Med 72(2):584–590

    Article  CAS  PubMed  Google Scholar 

  • Moon RB, Richards JH (1973) Determination of intracellular pH by 31P magnetic resonance. J Biol Chem 248(20):7276–7278

    Article  CAS  PubMed  Google Scholar 

  • Mózes FE, Valkovič L, Pavlides M, Robson MD, Tunnicliffe EM (2021) Hydration and glycogen affect T1 relaxation times of liver tissue. NMR Biomed 34:e4530. https://doi.org/10.1002/nbm.4530

  • Naressi A et al (2001) Java-based graphical user interface for the MRUI quantitation package. MAGMA 12(2–3):141–152

    Article  CAS  PubMed  Google Scholar 

  • Negendank W (1992) Studies of human tumors by MRS: a review. NMR Biomed 5(5):303–324

    Article  CAS  PubMed  Google Scholar 

  • Oberhaensli RD et al (1987) Study of hereditary fructose intolerance by use of 31P magnetic resonance spectroscopy. Lancet 2(8565):931–934

    Article  CAS  PubMed  Google Scholar 

  • Ordidge RJ, Connelly A, Lohman JAB (1986) Image-Selected Invivo Spectroscopy (ISIS) – a new technique for spatially selective NMR-spectroscopy. J Magn Reson 66(2):283–294

    CAS  Google Scholar 

  • Ouwerkerk R, Pettigrew RI, Gharib AM (2012) Liver metabolite concentrations measured with 1H MR spectroscopy. Radiology 265(2):565–575

    Article  PubMed  PubMed Central  Google Scholar 

  • Panda A et al (2012) Phosphorus liver MRSI at 3 T using a novel dual-tuned eight-channel 31P/1H H coil. Magn Reson Med 68(5):1346–56. https://doi.org/10.1002/mrm.24164. Epub 2012 Jan 27

  • Petersen KF et al (1999) Contributions of net hepatic glycogenolysis and gluconeogenesis to glucose production in cirrhosis. Am J Phys 276(3 Pt 1):E529–E535

    CAS  Google Scholar 

  • Pfleger L et al (2018) Absolute quantification of phosphor-containing metabolites in the liver using 31P MRSI and hepatic lipid volume correction at 7T indicates no dependence on body mass index or age. J Magn Reson Imaging

    Google Scholar 

  • Pineda N et al (2009) Measurement of hepatic lipid: high-speed T2-corrected multiecho acquisition at 1H MR spectroscopy--a rapid and accurate technique. Radiology 252(2):568–576

    Article  PubMed  Google Scholar 

  • Prompers JJ et al (2006) Dynamic MRS and MRI of skeletal muscle function and biomechanics. NMR Biomed 19(7):927–953

    Article  PubMed  Google Scholar 

  • Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14(4):260–264

    Article  CAS  PubMed  Google Scholar 

  • Purvis LAB et al (2017) OXSA: an open-source magnetic resonance spectroscopy analysis toolbox in MATLAB. PLoS One 12(9):e0185356

    Article  PubMed  PubMed Central  Google Scholar 

  • Radda GK et al (1995) Assessment of mitochondrial function and control in normal and diseased states. BiochimBiophysActa 1271(1):15–19

    Google Scholar 

  • Roden M et al (1996) The roles of insulin and glucagon in the regulation of hepatic glycogen synthesis and turnover in humans. JClinInvest 97(3):642–648

    CAS  Google Scholar 

  • Rodgers CT, Robson MD (2010) Receive array magnetic resonance spectroscopy: whitened singular value decomposition (WSVD) gives optimal Bayesian solution. Magn Reson Med 63(4):881–891

    Article  CAS  PubMed  Google Scholar 

  • Rodgers CT et al (2014) Human cardiac 31P magnetic resonance spectroscopy at 7 Tesla. Magn Reson Med 72(2):304–315

    Article  CAS  PubMed  Google Scholar 

  • Roig ES et al (2015) A double-quadrature radiofrequency coil design for proton-decoupled carbon-13 magnetic resonance spectroscopy in humans at 7T. Magn Reson Med 73(2):894–900

    Article  CAS  Google Scholar 

  • Roth K et al (1989) Noninvasive quantitation of phosphorus metabolites in human-tissue by NMR-spectroscopy. J Magn Reson 81(2):299–311

    CAS  Google Scholar 

  • Rothman DL et al (1991) Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR. Science 254(5031):573–576

    Article  CAS  PubMed  Google Scholar 

  • Roumans KHM et al (2020) Hepatic saturated fatty acid fraction is associated with de novo lipogenesis and hepatic insulin resistance. Nat Commun 11(1):1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid AI et al (2008) Quantitative ATP synthesis in human liver measured by localized 31P spectroscopy using the magnetization transfer experiment. NMR Biomed 21(5):437–443

    Article  CAS  PubMed  Google Scholar 

  • Schmid AI et al (2011) Liver ATP synthesis is lower and relates to insulin sensitivity in patients with type 2 diabetes. Diabetes Care 34(2):448–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sevastianova K et al (2010) Nonalcoholic fatty liver disease: detection of elevated nicotinamide adenine dinucleotide phosphate with in vivo 3.0-T 31 P MR spectroscopy with proton decoupling. Radiology 256(2):466–473

    Article  PubMed  Google Scholar 

  • Shaka AJ et al (1983) An improved sequence for broad-band decoupling – Waltz-16. J Magn Reson 52(2):335–338

    CAS  Google Scholar 

  • Shulman GI et al (1988) 13C NMR studies of glycogen turnover in the perfused rat liver. JBiolChem 263(11):5027–5029

    CAS  Google Scholar 

  • Sijens PE (2016) Assessing fatty liver with MRS. In: eMagRes, handbook of magnetic resonance spectroscopy in vivo: MRS theory, practice and applications. Wiley

    Google Scholar 

  • Skamarauskas JT et al (2013) Non-invasive in vivo magnetic resonance measures of glutathione synthesis in human and rat liver as an oxidative stress biomarker. Hepatology

    Google Scholar 

  • Stephenson MC et al (2013) Variability in fasting lipid and glycogen contents in hepatic and skeletal muscle tissue in subjects with and without type 2 diabetes: a 1H and 13C MRS study. NMR Biomed 26(11):1518–1526

    Article  CAS  PubMed  Google Scholar 

  • Szendroedi J et al (2009) Abnormal hepatic energy homeostasis in type 2 diabetes. Hepatology 50(4):1079–1086

    Article  CAS  PubMed  Google Scholar 

  • Ter Voert E et al (2019) Levels of choline-containing compounds in normal liver and liver metastases of colorectal cancer as recorded by (1) H MRS. NMR Biomed 32(1):e4035

    Article  PubMed  Google Scholar 

  • Thomsen C et al (1994) Quantification of liver fat using magnetic resonance spectroscopy. Magn ResonImaging 12(3):487–495

    CAS  Google Scholar 

  • Traussnigg S et al (2017) Ultra-high-field magnetic resonance spectroscopy in non-alcoholic fatty liver disease: novel mechanistic and diagnostic insights of energy metabolism in non-alcoholic steatohepatitis and advanced fibrosis. Liver Int 37(10):1544–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valkovič L et al (2014a) One-dimensional image-selected in vivo spectroscopy localized phosphorus saturation transfer at 7T. Magn Reson Med 72(6):1509–1515

    Article  PubMed  Google Scholar 

  • Valkovič L et al (2014b) Application of localized (3)(1)P MRS saturation transfer at 7 T for measurement of ATP metabolism in the liver: reproducibility and initial clinical application in patients with non-alcoholic fatty liver disease. Eur Radiol 24(7):1602–1609

    Article  PubMed  Google Scholar 

  • Valkovič L, Chmelík M, Krššák M (2017a) In-vivo(31)P-MRS of skeletal muscle and liver: a way for non-invasive assessment of their metabolism. Anal Biochem 529:193–215

    Article  PubMed  PubMed Central  Google Scholar 

  • Valkovič L et al (2017b) Adiabatic excitation for (31) P MR spectroscopy in the human heart at 7 T: a feasibility study. Magn Reson Med 78(5):1667–1673

    Article  PubMed  Google Scholar 

  • Valkovič L et al (2017c) Using a whole-body (31) P birdcage transmit coil and 16-element receive array for human cardiac metabolic imaging at 7T. PLoS One. 12(10):e0187153. https://doi.org/10.1371/journal.pone.0187153.

  • Vanhamme L, van den BA, Van Huffel S (1997) Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. JMagn Reson 129(1):35–43

    Article  CAS  Google Scholar 

  • Weghuber D et al (2007) Characterization of hepatic and brain metabolism in young adults with glycogen storage disease type I. A magnetic resonance spectroscopy study. Am J Physiol Endocrinol Metab

    Google Scholar 

  • Weis J, Kullberg J, Ahlstrom H (2018) Multiple breath-hold proton spectroscopy of human liver at 3T: relaxation times and concentrations of glycogen, choline, and lipids. J Magn Reson Imaging 47(2):410–417

    Article  PubMed  Google Scholar 

  • Wolf RF et al (1993) 31P magnetic resonance spectroscopy of the isolated human donor liver--feasibility in routine clinical practice and preliminary findings. Transplantation 55(4):949–951

    CAS  PubMed  Google Scholar 

  • Xavier A et al (2020) Metabolite cycled liver (1) H MRS on a 7 T parallel transmit system. NMR Biomed 33(8):e4343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang Y, Shen J (2011) Windowed stochastic proton decoupling for in vivo (13)C magnetic resonance spectroscopy with reduced RF power deposition. J Magn Reson Imaging 34(4):968–972

    Article  PubMed  PubMed Central  Google Scholar 

  • Yahya A, Tessier AG, Fallone BG (2011) Effect of J-coupling on lipid composition determination with localized proton magnetic resonance spectroscopy at 9.4 T. J Magn Reson Imaging 34(6):1388–1396

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support for the research by the authors at their home institutions by the Christian Doppler Society – Clinical Molecular MR Imaging (MOLIMA), by the Austrian Science Foundation (FWF KLI 904B) by the Slovak Grant Agencies VEGA (2/0003/20) and APVV (19-0032), and by a Sir Henry Dale Fellowship from the Wellcome Trust and the Royal Society (221805/Z/20/Z) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Krššák .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 European Biophysical Societies’ Association (EBSA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Valkovič, L., Gajdošík, M., Chmelík, M., Krššák, M. (2022). MR Spectroscopy of the Liver. In: Roberts, G., Watts, A. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35943-9_10094-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35943-9_10094-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35943-9

  • Online ISBN: 978-3-642-35943-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics