Encyclopedia of Biophysics

Living Edition
| Editors: Gordon Roberts, Anthony Watts, European Biophysical Societies

Nucleobase-Ascorbate-Transporter (NAT) Family

  • Anezia Kourkoulou
  • Claudio Scazzocchio
  • Stathis Frillingos
  • Emmanuel Mikros
  • Bernadette Byrne
  • George Diallinas
Living reference work entry
DOI: https://doi.org/10.1007/978-3-642-35943-9_10090-1

Synonyms

Introduction

The NAT/NCS2 family, designated A.2.40 (Saier et al. 2006, 2009), consists of thousands of proteins identified in all major domains of life, from archaea and bacteria to plants and animals (Pantazopoulou and Diallinas 2007; Diallinas and Gournas 2008; Gournas et al. 2008; Frillingos 2012). Prominent evolutionary gene-losses of NATs have been identified in several yeasts, including Saccharomyces cerevisiae, and in major pathogenic protozoa (e.g., Leishmania, Trypanosoma, or Plasmodium). The proteins of the NAT family are 414–650 amino acid residues in length and possess 14 transmembrane mostly α-helical segments (TMHs) characterized by a 7-helix inverted repeat (see later). Eukaryotic NAT members have extended N- and C-terminal cytoplasmic regions that include cis-acting amino acid sequence motifs controlling their traffic to the plasma membrane, as well as their turnover by constitutive or physiologically or...
This is a preview of subscription content, log in to check access.

References

  1. Alguel Y, Amillis S, Leung J, Lambrinidis G, Capaldi S, Scull NJ, Byrne B (2016a) Structure of eukaryotic purine/H+ symporter UapA suggests a role for homodimerization in transport activity. Nat Com 7:11336CrossRefGoogle Scholar
  2. Alguel Y, Cameron AD, Diallinas G, Byrne B (2016b) Transporter oligomerization: form and function. Biochem Soc Trans 44:1737–1744CrossRefGoogle Scholar
  3. Alper SL, Sharma AK (2013) The SLC26 gene family of anion transporters and channels. Mol Asp Med 34:494–515CrossRefGoogle Scholar
  4. Arakawa T, Kobayashi-Yurugi T, Alguel Y, Iwanari H, Hatae H, Iwata M, Iwata S (2015) Crystal structure of the anion exchanger domain of human erythrocyte band 3. Science 350:680–684CrossRefGoogle Scholar
  5. Bürzle M, Suzuki Y, Ackermann D, Miyazaki H, Maeda N, Clémençon B, Hediger MA (2013) The sodium-dependent ascorbic acid transporter family SLC23. Mol Asp Med 34:436–454CrossRefGoogle Scholar
  6. Byrne B (2017) It takes two to transport via an elevator. Cell Res 27:965–966CrossRefGoogle Scholar
  7. de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, Grigoriev IV (2017) Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus aspergillus. Gen Biol 14:28CrossRefGoogle Scholar
  8. Diallinas G (2014) Understanding transporter specificity and the discrete appearance of channel-like gating domains in transporters. Front Pharmacol 5:207CrossRefGoogle Scholar
  9. Diallinas G (2016) Dissection of transporter function: from genetics to structure. Trends Genet 32:576–590CrossRefGoogle Scholar
  10. Diallinas G, Gournas C (2008) Structure-function relationships in the nucleobase-ascorbate transporter (NAT) family: lessons from model microbial genetic systems. Channels 2:363–372CrossRefGoogle Scholar
  11. Evangelinos M, Martzoukou O, Chorozian K, Amillis S, Diallinas G (2016) BsdABsd2-dependent vacuolar turnover of a misfolded version of the UapA transporter along the secretory pathway: prominent role of selective autophagy. Mol Microbiol 100:893–911CrossRefGoogle Scholar
  12. Frillingos S (2012) Insights to the evolution of nucleobase-ascorbate transporters (NAT/NCS2) from the Cys-scanning analysis of xanthine permease XanQ. Int J Biochem Mol Biol 3:250–272PubMedPubMedCentralGoogle Scholar
  13. Geertsma ER, Chang Y-N, Shaik FR, Neldner Y, Pardon E, Steyaert J, Dutzler R (2015) Structure of a prokaryotic fumarate transporter reveals the architecture of the SLC26 family. Nat Struct Mol Biol 22:803–808CrossRefGoogle Scholar
  14. Gournas C, Papageorgiou I, Diallinas G (2008) The nucleobase-ascorbate transporter (NAT) family: genomics, evolution, structure-function relationships and physiological role. Mol BioSyst 4:404–416CrossRefGoogle Scholar
  15. Gournas C, Amillis S, Vlanti A, Diallinas G (2010) Transport-dependent endocytosis and turnover of a uric acid-xanthine permease. Mol Microbiol 75:246–260CrossRefGoogle Scholar
  16. Karachaliou M, Amillis S, Evangelinos M, Kokotos AC, Yalelis V, Diallinas G (2013) The arrestin-like protein ArtA is essential for ubiquitination and endocytosis of the UapA transporter in response to both broad-range and specific signals. Mol Microbiol 88:301–317CrossRefGoogle Scholar
  17. Krypotou E, Lambrinidis G, Evangelidis T, Mikros E, Diallinas G (2014) Modelling, substrate docking and mutational analysis identify residues essential for function and specificity of the major fungal purine transporter AzgA. Mol Microbiol 93:129–145CrossRefGoogle Scholar
  18. Lu F, Li S, Jiang Y, Jiang J, Fan H, Lu G, Yan N (2011) Structure and mechanism of the uracil transporter UraA. Nature 472:243–246CrossRefGoogle Scholar
  19. Niopek-Witz S, Deppe J, Lemieux MJ, Möhlmann T (2014) Biochemical characterization and structure-function relationship of two plant NCS2 proteins, the nucleobase transporters NAT3 and NAT12 from Arabidopsis thaliana. Biochim Biophys Acta Biomembr 1838:3025–3035CrossRefGoogle Scholar
  20. Pantazopoulou A, Diallinas G (2007) Fungal nucleobase transporters. FEMS Microbiol Rev 31:657–675CrossRefGoogle Scholar
  21. Papakostas K, Botou M, Frillingos S (2013) Functional identification of the hypoxanthine/guanine transporters YjcD and YgfQ and the adenine transporters PurP and YicO of Escherichia coli K-12. J Biol Chem 288:36827–36840CrossRefGoogle Scholar
  22. Reithmeier RAF, Casey JR, Kalli AC, Sansom MSP, Alguel Y, Iwata S (2016) Band 3, the human red cell chloride/bicarbonate anion exchanger (AE1, SLC4A1), in a structural context. Biochim Biophys Acta Biomembr 1858:1507–1532CrossRefGoogle Scholar
  23. Saier MH Jr, Tran CV, Barabote RD (2006) TCDB: the transporter classification database for membrane transport protein analyses and information. Nucleic Acids Res 34:D181–D186CrossRefGoogle Scholar
  24. Saier MH Jr, Yen MR, Noto K, Tamang DG, Elkan C (2009) The transporter classification database: recent advances. Nucl Acids Res 37:D274–D278CrossRefGoogle Scholar
  25. Vastermark A, Wollwage S, Houle ME, Rio R, Saier MH (2014) Expansion of the APC superfamily of secondary carriers. Proteins Struct Funct Bioinf 82(10):2797–2811CrossRefGoogle Scholar
  26. Yamamoto S, Inoue K, Murata T, Kamigaso S, Yasujima T, Maeda JY, Yuasa H (2010) Identification and functional characterization of the first nucleobase transporter in mammals: implication in the species difference in the intestinal absorption mechanism of nucleobases and their analogs between higher primates and other mammals. J Biol Chem 285:6522–6531CrossRefGoogle Scholar
  27. Yu X, Yang G, Yan C, Baylon JL, Jiang J, Fan H, Yan N (2017) Dimeric structure of the uracil: proton symporter UraA provides mechanistic insights into the SLC4/23/26 transporters. Cell Res 27:1020–1033CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies’ Association (EBSA) 2018

Authors and Affiliations

  • Anezia Kourkoulou
    • 1
  • Claudio Scazzocchio
    • 2
  • Stathis Frillingos
    • 3
  • Emmanuel Mikros
    • 4
  • Bernadette Byrne
    • 5
  • George Diallinas
    • 1
  1. 1.Department of BiologyNational and Kapodistrian University of Athens, PanepistimioupolisAthensGreece
  2. 2.Department of MicrobiologyLondonUK
  3. 3.Laboratory of Biological Chemistry, Department of MedicineUniversity of Ioannina School of Health SciencesIoanninaGreece
  4. 4.Department of PharmacologyNational and Kapodistrian University of Athens, PanepistimioupolisAthensGreece
  5. 5.Department of Life SciencesImperial College LondonLondonUK

Section editors and affiliations

  • Peter J. F. Henderson
    • 1
  1. 1.Astbury Centre for Structural Molecular Biology, Institute of Membrane and Systems BiologyUniversity of LeedsLeedsUK