Encyclopedia of Earthquake Engineering

2015 Edition
| Editors: Michael Beer, Ioannis A. Kougioumtzoglou, Edoardo Patelli, Siu-Kui Au

Hyperspectral Data in Urban Areas

  • Giorgio Antonino LicciardiEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-642-35344-4_221


Change detection; Data fusion; Hyperspectral images; Hyperspectral sensors; Image processing; Material identification; Remote sensing


The scope of this entry is to introduce hyperspectral remote sensing data and its applications in urban environment.

In the last decades imaging spectroscopy (Goetz et al. 1985), commonly referred to as hyperspectral remote sensing, has become a widely used method for identification and quantification of surface materials in different kinds of environments, such as urban, rural, and geological areas (Heiden et al. 2012).

A hyperspectral sensor is able to record a high number of spectral bands, corresponding to narrow contiguous wavelength intervals. This characteristic permits the discrimination of different materials based on their unique spectral characteristics, called spectral signature. In general, two materials can be distinguished by broad and narrow spectral reflectance features determined by the chemical composition of the...

This is a preview of subscription content, log in to check access.


  1. Ben-Dor E (2001) Imaging spectrometry for urban applications. In: Van der Meer FD, De Jong SM (eds) Imaging spectrometry. Basic principles and prospective applications. Kluwer, DordrechtGoogle Scholar
  2. Clark RN, Green RO, Swayze GA, Meeker G, Sutley S, Hoefen TM, Livo KE, Plumlee G, Pavri B, Sarture C, Wilson S, Hageman P, Lamothe P, Vance JS, Boardman J, Brownfield I, Gent C, Morath LC, Taggart J, Theodorakos PM, Adams M (2001) Environmental studies of the world trade center area after the September 11, 2001 attack. U.S. Geological Survey, Open File Report OFR-01-0429Google Scholar
  3. Eismann MT, Meola J, Hardie RC (2008) Hyperspectral change detection in the presence of diurnal and seasonal variations. IEEE Trans Geosci Remote Sens 46:237–249CrossRefGoogle Scholar
  4. Fukunaga K (1990) Introduction to statistical pattern recognition, 2nd edn. Academic, San DiegozbMATHGoogle Scholar
  5. Goetz AFH, Vane G, Solomon JE, Barrett NR (1985) Imaging spectrometry for earth remote sensing. Science 228(4704):1147–1153CrossRefGoogle Scholar
  6. Green AA, Berman M, Switzer P, Craig MD (1988) A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans Geosci Remote Sens 26(1):65–74CrossRefGoogle Scholar
  7. Heiden U, Heldens W, Roessner S, Segl K, Esch T, Mueller A (2012) Urban structure type characterization using hyperspectral remote sensing and height information. Landscape Urban Plann 105(4):361–375CrossRefGoogle Scholar
  8. Jutten C, Herault J (1991) Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture. Signal Processing 1991(24):1–10CrossRefGoogle Scholar
  9. Kruse FA, Lefkoff AB, Boradman JB, Heidebrecht KG, Shapiro AT, Barloon PJ, Goetz AFH (1993) The spectral image processing system (SIPS)- iterative visualization and analysis of imaging spectrometer data. Remote Sens Environ 44:145–163CrossRefGoogle Scholar
  10. Licciardi G, Del Frate F (2011) Pixel unmixing in hyperspectral data by means of neural networks. IEEE Trans Geosci Remote Sens 49(11):4163–4172CrossRefGoogle Scholar
  11. Licciardi G, Pacifici F, Tuia D, Prasad S, West T, Giacco F, Inglada J, Christophe E, Chanussot J, Gamba P (2009) Decision fusion for the classification of hyperspectral data: outcome of the 2008 GRS-S data fusion contest. IEEE Trans Geosci Remote Sens 47(11):3857–3865CrossRefGoogle Scholar
  12. Licciardi G, Marpu PR, Chanussot J, Benediktsson JA (2012) Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles. IEEE Geosci Remote Sens Lett 9(3):447–451CrossRefGoogle Scholar
  13. Mckeown DM Jr, Cochran SD, Fored SJ, Mcglone JC, Shufelt JA, Yokum DA (1999) Fusion of HYDICE hyperspectral data with panchromatic imagery for cartographic feature extraction. IEEE Trans Geosci Remote Sens 37(3):1261–1277CrossRefGoogle Scholar
  14. Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. Geosci Remote Sens IEEE Trans 42(8):1778–1790CrossRefGoogle Scholar
  15. Nielsen AA, Conradsen K, Simpson JJ (1998) Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: new approaches to change detection studies. Remote Sens Environ 64:1–19CrossRefGoogle Scholar
  16. Pesaresi M, Benediktsson JA (2001) A new approach for the morphological segmentation of high-resolution satellite imagery. Geosci Remote Sens, IEEE Trans 39(2):309–320CrossRefGoogle Scholar
  17. Price JC (1995) Examples of high resolution visible to near-infrared reflectance and a standardize collection for remote sensing studies. Int J Remote Sens 16:993–1000CrossRefGoogle Scholar
  18. Priego B, Souto D, Bellas F, Duro RJ (2013) Hyperspectral image segmentation through evolved cellular automata. Pattern Recogn Lett 34(14):1648–1658CrossRefGoogle Scholar
  19. Roberts DA, Gardner M, Church R, Ustin S, Scheer G, Green RO (1998) Mapping chaparral in the Santa Monica mountains using multiple end member spectral mixture models. Remote Sens Environ 65:267–279CrossRefGoogle Scholar
  20. Roessner S, Segl K, Heiden U, Kaufmann H (2001) Automated differentiation of urban surfaces based on airborne hyperspectral imagery. IEEE Trans Geosci Remote Sens 39:1525–1532CrossRefGoogle Scholar
  21. Segl K, Kaufmann H (2001) Detection of small objects from high resolution panchromatic satellite imagery based on supervised image segmentation. IEEE Trans Geosci Remote Sens 39(9):2080–2083CrossRefGoogle Scholar
  22. Serpico SB, Bruzzone L (1994) A new search algorithm for feature selection in hyperspectral remote sensing images. IEEE Trans Geosci Remote Sens 39(7):1360–1367CrossRefGoogle Scholar
  23. Siedlecki W, Sklansky J (1988) On automatic feature selection. Int J Pattern Recognit Artif Intell 2(2):197–210CrossRefGoogle Scholar
  24. Tarabalka Y, Chanussot J, Benediktsson JA (2010) Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recogn 43(7):2367–2379CrossRefzbMATHGoogle Scholar
  25. Zhang Q, Pauca VP, Plemmons RJ, Nikic DD (2013) Detecting objects under shadows by fusion of hyperspectral and lidar data: a physical model approach. In: 5th workshop hyperspectral image and signal processing: evolution in remote sensing, WHISPERS2013, 2013, pp 1–4Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.GIPSA-Lab – INP GrenobleGrenoble Institute of TechnologySaint Martin d’HèresFrance