Skip to main content

InSAR and A-InSAR: Theory

  • Reference work entry
  • First Online:
Encyclopedia of Earthquake Engineering
  • 309 Accesses

Synonyms

DInSAR; Interferometric synthetic aperture radar; MT-InSAR; Multi-temporal InSAR; Persistent scatterer InSAR; PSI; PS-InSAR; SAR interferometry; SBAS; SB-INSAR; Small baseline InSAR; Time-series InSAR; TS-InSAR

Introduction

The SAR technique allows the formation of high-resolution radar images from the data acquired by side-looking instruments installed on spacecraft, aircraft, or the ground. The fundamentals underlying SAR image processing are presented in Chapter 3 “SAR Images, Interpretation of”. Each pixel of an image corresponds to the scattered signal from a resolution element on the ground, which is transmitted and received by the SAR. A pixel is characterized by two values: the amplitude and the phase. While the amplitude of a single image can be interpreted in terms of the backscattering properties of the ground (Fig. 1a), the phase is not very informative because it is a pseudorandom contribution from the configuration of all scatterers within the resolution...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bekaert DPS, Hooper A, Wright TJ (2015) A spatially-variable power-law tropospheric correction technique for InSAR data. J Geophys Res Solid Earth, doi:10.1002/2014JB011558

    Google Scholar 

  • Biggs J, Wright T, Lu Z, Parsons B (2007) Multi-interferogram method for measuring interseismic deformation: Denali fault, Alaska. Geophys J Int 170:1165–1179

    Google Scholar 

  • Chen CW (2001) Statistical-cost network-flow approaches to two-dimensional phase unwrapping for radar interferometry. PhD thesis, Stanford University

    Google Scholar 

  • Costantini M (1998) A novel phase unwrapping method based on network programming. IEEE Trans Geosci Remote Sens 36(3):813–821

    MathSciNet  Google Scholar 

  • Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A (2011) A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans Geosci Remote Sens 49(9):3460–3470

    Google Scholar 

  • Gatelli F, Guamieri AM, Parizzi F, Pasquali P, Prati C, Rocca F (1994) The wave-number shift in SAR interferometry. IEEE Trans Geosci Remote Sens 32(4):855–865

    Google Scholar 

  • Goldstein RM, Werner CL (1998) Radar interferogram filtering for geophysical applications. Geophys Res Lett 25(21):4035–4038

    Google Scholar 

  • Goldstein RM, Zebker HA, Werner CL (1988) Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci 23(4):713–720

    Google Scholar 

  • Hanssen RF (2001) Radar interferometry data interpretation and error analysis. Springer, Dordrecht

    Google Scholar 

  • Hooper A (2008) A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett 35:L16302

    Google Scholar 

  • Hooper A (2010) A statistical-cost approach to unwrapping the phase of InSAR time series. European Space Agency (Special Publication) ESA. Noordwijk, The Netherlands SP-677

    Google Scholar 

  • Hooper A, Segall P, Zebker H (2007) Persistent scatterer InSAR for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J Geophys Res 112:B07407

    Google Scholar 

  • Hooper A, Bekaert D, Spaans K, Arιkan M (2012) Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 514:1–13

    Google Scholar 

  • Jolivet R, Grandin R, Lasserre C, Doin M-P, Peltzer G (2011) Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data. Geophys Res Lett 38:l17311. doi:10.1029/2011GL048757

    Google Scholar 

  • Kampes BM (2005) Displacement parameter estimation using permanent scatterer interferometry. PhD thesis, Delft University of Technology

    Google Scholar 

  • Massonnet D, Souyris JC (2008) Imaging with synthetic aperture radar. EPFL-CRC Press, Lausanne, 280 p

    Google Scholar 

  • Meyer FJ (2011) Performance requirements for ionospheric correction of low-frequency SAR data. IEEE Trans Geosci Remote Sens 49(10):3694–3702

    Google Scholar 

  • Pepe A, Lanari R (2006) On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms. IEEE Trans Geosci Remote Sens 44(9):2374–2383

    Google Scholar 

  • Pinel V, Poland M, Hooper A (2014) Volcanology: lessons learned from synthetic aperture radar imagery. J Volcanol Geotherm Res 289:81–113

    Google Scholar 

  • Tosi L, Teatini P, Strozzi T (2013) Natural versus anthropogenic subsidence of Venice. Sci Rep 3:2710

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Hooper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Hooper, A. (2015). InSAR and A-InSAR: Theory. In: Beer, M., Kougioumtzoglou, I.A., Patelli, E., Au, SK. (eds) Encyclopedia of Earthquake Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35344-4_220

Download citation

Publish with us

Policies and ethics