Encyclopedia of Earthquake Engineering

2015 Edition
| Editors: Michael Beer, Ioannis A. Kougioumtzoglou, Edoardo Patelli, Siu-Kui Au

InSAR and A-InSAR: Theory

  • Andrew HooperEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-642-35344-4_220


DInSAR; Interferometric synthetic aperture radar; MT-InSAR; Multi-temporal InSAR; Persistent scatterer InSAR; PSI; PS-InSAR; SAR interferometry; SBAS; SB-INSAR; Small baseline InSAR; Time-series InSAR; TS-InSAR


The SAR technique allows the formation of high-resolution radar images from the data acquired by side-looking instruments installed on spacecraft, aircraft, or the ground. The fundamentals underlying SAR image processing are presented in Chapter 3 “  SAR Images, Interpretation of”. Each pixel of an image corresponds to the scattered signal from a resolution element on the ground, which is transmitted and received by the SAR. A pixel is characterized by two values: the amplitude and the phase. While the amplitude of a single image can be interpreted in terms of the backscattering properties of the ground (Fig. 1a), the phase is not very informative because it is a pseudorandom contribution from the configuration of all scatterers within the resolution...
This is a preview of subscription content, log in to check access.


  1. Bekaert DPS, Hooper A, Wright TJ (2015) A spatially-variable power-law tropospheric correction technique for InSAR data. J Geophys Res Solid Earth, doi:10.1002/2014JB011558Google Scholar
  2. Biggs J, Wright T, Lu Z, Parsons B (2007) Multi-interferogram method for measuring interseismic deformation: Denali fault, Alaska. Geophys J Int 170:1165–1179Google Scholar
  3. Chen CW (2001) Statistical-cost network-flow approaches to two-dimensional phase unwrapping for radar interferometry. PhD thesis, Stanford UniversityGoogle Scholar
  4. Costantini M (1998) A novel phase unwrapping method based on network programming. IEEE Trans Geosci Remote Sens 36(3):813–821MathSciNetGoogle Scholar
  5. Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A (2011) A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans Geosci Remote Sens 49(9):3460–3470Google Scholar
  6. Gatelli F, Guamieri AM, Parizzi F, Pasquali P, Prati C, Rocca F (1994) The wave-number shift in SAR interferometry. IEEE Trans Geosci Remote Sens 32(4):855–865Google Scholar
  7. Goldstein RM, Werner CL (1998) Radar interferogram filtering for geophysical applications. Geophys Res Lett 25(21):4035–4038Google Scholar
  8. Goldstein RM, Zebker HA, Werner CL (1988) Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci 23(4):713–720Google Scholar
  9. Hanssen RF (2001) Radar interferometry data interpretation and error analysis. Springer, DordrechtGoogle Scholar
  10. Hooper A (2008) A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett 35:L16302Google Scholar
  11. Hooper A (2010) A statistical-cost approach to unwrapping the phase of InSAR time series. European Space Agency (Special Publication) ESA. Noordwijk, The Netherlands SP-677Google Scholar
  12. Hooper A, Segall P, Zebker H (2007) Persistent scatterer InSAR for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J Geophys Res 112:B07407Google Scholar
  13. Hooper A, Bekaert D, Spaans K, Arιkan M (2012) Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics 514:1–13Google Scholar
  14. Jolivet R, Grandin R, Lasserre C, Doin M-P, Peltzer G (2011) Systematic InSAR tropospheric phase delay corrections from global meteorological reanalysis data. Geophys Res Lett 38:l17311. doi:10.1029/2011GL048757Google Scholar
  15. Kampes BM (2005) Displacement parameter estimation using permanent scatterer interferometry. PhD thesis, Delft University of TechnologyGoogle Scholar
  16. Massonnet D, Souyris JC (2008) Imaging with synthetic aperture radar. EPFL-CRC Press, Lausanne, 280 pGoogle Scholar
  17. Meyer FJ (2011) Performance requirements for ionospheric correction of low-frequency SAR data. IEEE Trans Geosci Remote Sens 49(10):3694–3702Google Scholar
  18. Pepe A, Lanari R (2006) On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms. IEEE Trans Geosci Remote Sens 44(9):2374–2383Google Scholar
  19. Pinel V, Poland M, Hooper A (2014) Volcanology: lessons learned from synthetic aperture radar imagery. J Volcanol Geotherm Res 289:81–113Google Scholar
  20. Tosi L, Teatini P, Strozzi T (2013) Natural versus anthropogenic subsidence of Venice. Sci Rep 3:2710Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of Earth and EnvironmentThe University of Leeds, Maths/Earth and Environment BuildingLeedsUK