Skip to main content

Biologics in Open Fractures

  • Reference work entry
  • First Online:
European Surgical Orthopaedics and Traumatology

Abstract

The successful management of open fractures with high infection (<50 %) and non-union rate is a difficult clinical task. In the last decade new biological methods (biologics) have been invented, assisting the modern trauma surgeon in the treatment of open fractures. In this article we provide an overview of the recent management algorithms and individual treatment options for open fractures. Beside management of infection and associated complications, we focus on the late complications, non-unions and bone segmental defects, and their management. Commercially available bone grafts and growth factors are discussed, summarized and future perspectives mentioned.

Previously published in G. Bentley (ed.), European Instructional Lectures, European Instructional Lectures 13, DOI 10.1007/978-3-642-36149-4_6, © EFORT 2013

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmidmaier G, Lucke M, Wildemann B, Haas NP, Raschke M. Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review. Injury. 2006;37 Suppl 2:S105–12.

    Article  PubMed  Google Scholar 

  2. Court-Brown CM, Rimmer S, Prakash U, McQueen MM. The epidemiology of open long bone fractures. Injury. 1998;29:529–34.

    Article  CAS  PubMed  Google Scholar 

  3. Schwabe P, Haas NP, Schaser KD. Fractures of the extremities with severe open soft tissue damage. Initial management and reconstructive treatment strategies. Unfallchirurg. 2010;113:647–70. quiz 671–2.

    Article  CAS  PubMed  Google Scholar 

  4. Bosse MJ, MacKenzie EJ, Kellam JF, Burgess AR, Webb LX, Swiontkowski MF, Sanders RW, Jones AL, McAndrew MP, Patterson BM, McCarthy ML, Travison TG, Castillo RC. An analysis of outcomes of reconstruction or amputation after leg-threatening injuries. N Engl J Med. 2002;347:1924–31.

    Article  PubMed  Google Scholar 

  5. Taitsman LA, Lynch JR, Agel J, Barei DP, Nork SE. Risk factors for femoral nonunion after femoral shaft fracture. J Trauma. 2009;67:1389–92.

    Article  PubMed  Google Scholar 

  6. Davies AM, Grimer R. The penumbra sign in subacute osteomyelitis. Eur Radiol. 2005;15:1268–70.

    Article  CAS  PubMed  Google Scholar 

  7. Davies AM, Hughes DE, Grimer RJ. Intramedullary and extramedullary fat globules on magnetic resonance imaging as a diagnostic sign for osteomyelitis. Eur Radiol. 2005;15:2194–9.

    Article  CAS  PubMed  Google Scholar 

  8. Gustilo RB, Merkow RL, Templeman D. The management of open fractures. J Bone Joint Surg Am. 1990;72:299–304.

    CAS  PubMed  Google Scholar 

  9. Court-Brown CM, Wheelwright EF, Christie J, McQueen MM. External fixation for type III open tibial fractures. J Bone Joint Surg Br. 1990;72:801–4.

    CAS  PubMed  Google Scholar 

  10. Gustilo RB, Anderson JT. Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: retrospective and prospective analyses. J Bone Joint Surg Am. 1976;58:453–8.

    CAS  PubMed  Google Scholar 

  11. Gustilo RB, Mendoza RM, Williams DN. Problems in the management of type III (severe) open fractures: a new classification of type III open fractures. J Trauma. 1984;24:742–6.

    Article  CAS  PubMed  Google Scholar 

  12. Lenarz CJ, Watson JT, Moed BR, Israel H, Mullen JD, Macdonald JB. Timing of wound closure in open fractures based on cultures obtained after debridement. J Bone Joint Surg Am. 2010;92:1921–6.

    Article  PubMed  Google Scholar 

  13. Seligson D, Ostermann PA, Henry SL, Wolley T. The management of open fractures associated with arterial injury requiring vascular repair. J Trauma. 1994;37:938–40.

    Article  CAS  PubMed  Google Scholar 

  14. Sirkin M, Sanders R, DiPasquale T, Herscovici Jr D. A staged protocol for soft tissue management in the treatment of complex pilon fractures. J Orthop Trauma. 2004;18:S32–8.

    Article  PubMed  Google Scholar 

  15. Kanakaris NK, Morell D, Gudipati S, Britten S, Giannoudis PV. Reaming irrigator aspirator system: early experience of its multipurpose use. Injury. 2011;42 Suppl 4:S28–34.

    Article  PubMed  Google Scholar 

  16. Webb LX, Pape HC. Current thought regarding the mechanism of action of negative pressure wound therapy with reticulated open cell foam. J Orthop Trauma. 2008;22:S135–7.

    Article  PubMed  Google Scholar 

  17. Stannard JP, Volgas DA, Stewart R, McGwin Jr G, Alonso JE. Negative pressure wound therapy after severe open fractures: a prospective randomized study. J Orthop Trauma. 2009;23:552–7.

    Article  PubMed  Google Scholar 

  18. Gosselin RA, Roberts I, Gillespie WJ. Antibiotics for preventing infection in open limb fractures. Cochrane Database Syst Rev. 2009;(4):CD003764.

    Google Scholar 

  19. Gosselin A, Hare L. Effect of sedimentary cadmium on the behavior of a burrowing mayfly (ephemeroptera, hexagenia limbata). Environ Toxicol Chem SETAC. 2004;23:383–7.

    Article  CAS  Google Scholar 

  20. Patzakis MJ, Wilkins J. Factors influencing infection rate in open fracture wounds. Clin Orthop Relat Res. 1989;(243):36–40.

    Google Scholar 

  21. Darley ES, MacGowan AP. Antibiotic treatment of gram-positive bone and joint infections. J Antimicrob Chemother. 2004;53:928–35.

    Article  CAS  PubMed  Google Scholar 

  22. Kawashima M, Tamura H, Nagayoshi I, Takao K, Yoshida K, Yamaguchi T. Hyperbaric oxygen therapy in orthopedic conditions. Undersea Hyperb Med J Undersea Hyperb Med Soc Inc. 2004;31:155–62.

    CAS  Google Scholar 

  23. Knaepler H. Local application of gentamicin-containing collagen implant in the prophylaxis and treatment of surgical site infection in orthopaedic surgery. Int J Surg. 2012;10 Suppl 1:S15–20.

    Article  PubMed  Google Scholar 

  24. Lovering AM, Sunderland J. Impact of soaking gentamicin-containing collagen implants on potential antimicrobial efficacy. Int J Surg. 2012;10 Suppl 1:S2–4.

    Article  PubMed  Google Scholar 

  25. Ostermann PA, Henry SL, Seligson D. Value of adjuvant local antibiotic administration in therapy of open fractures. A comparative analysis of 704 consecutive cases. Langenbecks Arch Chir. 1993;378:32–6.

    Article  CAS  PubMed  Google Scholar 

  26. Masquelet AC, Fitoussi F, Begue T, Muller GP. Reconstruction of the long bones by the induced membrane and spongy autograft. Ann Chir Plast Esthet. 2000;45:346–53.

    CAS  PubMed  Google Scholar 

  27. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury. 2005;36 Suppl 3:S20–7.

    Article  PubMed  Google Scholar 

  28. Retzepi M, Donos N. Guided bone regeneration: biological principle and therapeutic applications. Clin Oral Implants Res. 2010;21:567–76.

    Article  PubMed  Google Scholar 

  29. Skaggs DL, Samuelson MA, Hale JM, Kay RM, Tolo VT. Complications of posterior iliac crest bone grafting in spine surgery in children. Spine. 2000;25:2400–2.

    Article  CAS  PubMed  Google Scholar 

  30. Niedhart C, Pingsmann A, Jurgens C, Marr A, Blatt R, Niethard FU. Complications after harvesting of autologous bone from the ventral and dorsal iliac crest – a prospective, controlled study. Z Orthop Ihre Grenzgeb. 2003;141:481–6.

    Article  CAS  PubMed  Google Scholar 

  31. Schmidmaier G, Herrmann S, Green J, Weber T, Scharfenberger A, Haas NP, Wildemann B. Quantitative assessment of growth factors in reaming aspirate, iliac crest, and platelet preparation. Bone. 2006;39:1156–63.

    Article  CAS  PubMed  Google Scholar 

  32. Bacher A, Mayer N, Klimscha W, Oismuller C, Steltzer H, Hammerle A. Effects of pentoxifylline on hemodynamics and oxygenation in septic and nonseptic patients. Crit Care Med. 1997;25:795–800.

    Article  CAS  PubMed  Google Scholar 

  33. Berven S, Tay BK, Kleinstueck FS, Bradford DS. Clinical applications of bone graft substitutes in spine surgery: consideration of mineralized and demineralized preparations and growth factor supplementation. Eur Spine J Off publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. 2001;10 Suppl 2:S169–77.

    Google Scholar 

  34. Blokhuis TJ, Lindner T. Allograft and bone morphogenetic proteins: an overview. Injury. 2008;39 Suppl 2:S33–6.

    Article  PubMed  Google Scholar 

  35. Griffin XL, Wallace D, Parsons N, Costa ML. Platelet rich therapies for long bone healing in adults. Cochrane Database Syst Rev. 2012;7, CD009496.

    PubMed  Google Scholar 

  36. Kasten P, Vogel J, Geiger F, Niemeyer P, Luginbuhl R, Szalay K. The effect of platelet-rich plasma on healing in critical-size long-bone defects. Biomaterials. 2008;29:3983–92.

    Article  CAS  PubMed  Google Scholar 

  37. Schmidmaier G, Schwabe P, Wildemann B, Haas NP. Use of bone morphogenetic proteins for treatment of non-unions and future perspectives. Injury. 2007;38 Suppl 4:S35–41.

    Article  PubMed  Google Scholar 

  38. Lissenberg-Thunnissen SN, de Gorter DJ, Sier CF, Schipper IB. Use and efficacy of bone morphogenetic proteins in fracture healing. Int Orthop. 2011;35:1271–80.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Brown KV, Li B, Guda T, Perrien DS, Guelcher SA, Wenke JC. Improving bone formation in a rat femur segmental defect by controlling bone morphogenetic protein-2 release. Tissue Eng Part A. 2011;17:1735–46.

    Article  CAS  PubMed  Google Scholar 

  40. Kanakaris NK, Lasanianos N, Calori GM, Verdonk R, Blokhuis TJ, Cherubino P, De Biase P, Giannoudis PV. Application of bone morphogenetic proteins to femoral non-unions: a 4-year multicentre experience. Injury. 2009;40 Suppl 3:S54–61.

    Article  PubMed  Google Scholar 

  41. Fuchs T, Stange R, Schmidmaier G, Raschke MJ. The use of gentamicin-coated nails in the tibia: preliminary results of a prospective study. Arch Orthop Trauma Surg. 2011;131:1419–25.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Schnoke M, Midura RJ. Pulsed electromagnetic fields rapidly modulate intracellular signaling events in osteoblastic cells: comparison to parathyroid hormone and insulin. J Orthop Res Off Publ Orthop Res Soc. 2007;25:933–40.

    Article  CAS  Google Scholar 

  43. Victoria G, Petrisor B, Drew B, Dick D. Bone stimulation for fracture healing: what’s all the fuss? Indian J Orthop. 2009;43:117–20.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Ciombor DM, Aaron RK. The role of electrical stimulation in bone repair. Foot Ankle Clin. 2005;10:579–93, vii.

    Article  PubMed  Google Scholar 

  45. Hannouche D, Petite H, Sedel L. Current trends in the enhancement of fracture healing. J Bone Joint Surg Br. 2001;83:157–64.

    Article  CAS  PubMed  Google Scholar 

  46. Kuzyk PR, Schemitsch EH. The science of electrical stimulation therapy for fracture healing. Indian J Orthop. 2009;43:127–31.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Midura RJ, Ibiwoye MO, Powell KA, Sakai Y, Doehring T, Grabiner MD, Patterson TE, Zborowski M, Wolfman A. Pulsed electromagnetic field treatments enhance the healing of fibular osteotomies. J Orthop Res Off Publ Orthop Res Soc. 2005;23:1035–46.

    Article  Google Scholar 

  48. Boyette MY, Herrera-Soto JA. Treatment of delayed and nonunited fractures and osteotomies with pulsed electromagnetic field in children and adolescents. Orthopedics. 2012;35:e1051–5.

    Article  PubMed  Google Scholar 

  49. Assiotis A, Sachinis NP, Chalidis BE. Pulsed electromagnetic fields for the treatment of tibial delayed unions and nonunions. A prospective clinical study and review of the literature. J Orthop Surg Res. 2012;7:24.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Nolte PA, van der Krans A, Patka P, Janssen IM, Ryaby JP, Albers GH. Low-intensity pulsed ultrasound in the treatment of nonunions. J Trauma. 2001;51:693–702. discussion 702–3.

    Article  CAS  PubMed  Google Scholar 

  51. Rutten S, Nolte PA, Guit GL, Bouman DE, Albers GH. Use of low-intensity pulsed ultrasound for posttraumatic nonunions of the tibia: a review of patients treated in the Netherlands. J Trauma. 2007;62:902–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kleber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 EFORT

About this entry

Cite this entry

Kleber, C., Haas, N.P. (2014). Biologics in Open Fractures. In: Bentley, G. (eds) European Surgical Orthopaedics and Traumatology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34746-7_199

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34746-7_199

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34745-0

  • Online ISBN: 978-3-642-34746-7

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics