Skip to main content

Management of Delayed Union, Non-Union and Mal-Union of Long Bone Fractures

  • Reference work entry
  • First Online:
European Surgical Orthopaedics and Traumatology

Abstract

Long bone fractures heal without complications in most patients. Only a small percentage of fractures, between 2 % and 10 %, result in delayed union or non-union. The process of fracture healing involves several stages, including inflammatory reaction, production of soft callus and then rigid bone, and remodelling. Delayed union is defined as the absence of radiographic progression of healing or the instability of a fracture upon clinical examination between 4 and 6 months after injury. Non-union is defined as a fracture that does not unite within 9–12 months. or the extension of the healing process beyond the expected rate. Mal-union refers to the healing of a fracture with incorrect anatomical alignment. Various aspects of the stages of fracture healing, aetiology and pathogenesis of delayed union, non-union and mal-union and the optional treatment modalities of these pathologies are reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson LD. Compression plate fixation and the effect of different types of internal fixation on fracture healing. J Bone Joint Surg. 1965;47A:101–208.

    Google Scholar 

  2. Mckibbin R. The biology of fracture healing in long bones. J Bone Joint Surg Br. 1978;60:150–61.

    PubMed  Google Scholar 

  3. Volpin G, Rees AJ, Ali SY, Bentley G. Distribution of alkaline phosphatase activity in experimentally produced callus in rats. J Bone Joint Surg Br. 1986;68B:629–34.

    Google Scholar 

  4. Marsh DR, Li G. The biology of fracture healing; optimizing outcome. Br Med Bull. 1999;55:856–69.

    CAS  PubMed  Google Scholar 

  5. Grudnes O, Rickeras O. The importance of haematoma for fracture healing in rats. Acta Orthop Scand. 1993;64:340–2.

    Google Scholar 

  6. Einhorn TA, Majeska RJ, Rush EB, et al. The expression of cytokine activity by fracture callus. J Bone Miner Res. 1995;10:1272–81.

    CAS  PubMed  Google Scholar 

  7. Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop. 1998;(Suppl 355):7–21.

    Google Scholar 

  8. Bostrom MPG, Asnis P. Transforming growth factor beta in fracture repair. Clin Orthop. 1998;(Suppl 355):124–31.

    Google Scholar 

  9. Cho TJ, Gerstenfeld LC, Barnes GL. Cytokines and fracture healing. Curr Opin Orthop. 2001;12:403–8.

    Google Scholar 

  10. Lieberman J, Daluiski A, Einhorn TA. The role of growth factors in the repair of bone: biology and clinical applications. J Bone Joint Surg Am. 2002;84:1032–44.

    PubMed  Google Scholar 

  11. Neilsen HM, Andreassen TT, Ledet T, Oxlund H. Local injection of TGF-beta increases the strength of tibial fractures in the rat. Acta Orthop Scand. 1994;65:37–41.

    Google Scholar 

  12. Rowley DI. Enhancement of the healing of fractures. In: Thorngren KG, Soucacos PN, Horan F, Scott J, editors. European instructional course lectures. London: European Federation of national Associations of Orthopaedic and Traumatology (EFORT) and The British Society of Bone and Joint Surgery; 2001. p. 24–30.

    Google Scholar 

  13. Glimcher MJ, Shapiro E, Ellis RD, Eyre DR. Changes in tissue morphology and collagen composition during the repair of cortical bone in adult chicken. J Bone Joint Surg Am. 1980;62A:964–73.

    Google Scholar 

  14. Frost HM. The biology of fracture healing. Clin Orthop Relat Res. 1989;248:283–309.

    PubMed  Google Scholar 

  15. Salomon CD. A fine structural study on the extracellular activity of alkaline phosphatase and its role in calcification. Calcif Tissue Res. 1974;15:201–12.

    CAS  PubMed  Google Scholar 

  16. Wuthier RE. A review of the primary mechanism of enchondral calcification with special emphasis on the role of cells, mitochondria and matrix vesicles. Clin Orthop Rel Res. 1982;169:219–42.

    CAS  Google Scholar 

  17. Cho TJ, Gerstenfeld LC, Einhorn TA. Differential temporal expression of members of the TGF-B superfamily during murine fracture healing. J Bone Miner Res. 2002;17:513–20.

    CAS  PubMed  Google Scholar 

  18. Einhorn TA. Enhancement of fracture-healing. J Bone Joint Surg Am. 1995;77:940–56.

    CAS  PubMed  Google Scholar 

  19. Einhorn TA, Lane JM. Significant advances have been made in the way surgeons treat fractures. Clin Orthop. 1998;(Suppl 355):2–3.

    Google Scholar 

  20. Marsh DR. Concepts of fractures union, delayed union, and non union. Clin Orthop. 1998;(Suppl 355):22–30.

    Google Scholar 

  21. Tzioupis C, Giannoudis PV. Prevalence of long-bone non-unions. Injury. 2007;38 Suppl 2:S3–9.

    PubMed  Google Scholar 

  22. Boyd HB, Lipinski SW, Wiley JH. Observations on nonunion of the shafts of long bones with statistical analysis of 842 patients. J Bone Joint Surg Am. 1965;43:159–68.

    Google Scholar 

  23. Muller ME, Thomas RJ. Treatment of non-union in fractures of long bones. Clin Orthop Relat Res. 1979;138:141–58.

    PubMed  Google Scholar 

  24. Rosen H. The treatment of nonunions and pseudarthroses of the humeral shaft. Orthop Clin North Am. 1990;21:725–42.

    CAS  PubMed  Google Scholar 

  25. Ring D, Kloen P, Kadzielski J, Helfet D, Jupiter JB. Locking compression plates for osteoporotic nonunions of the diaphyseal humerus. Clin Orthop Relat Res. 2004;425:50–4.

    PubMed  Google Scholar 

  26. Jain AK, Sinha S. Infected nonunions of long bones. Clin Orthop Relat Res. 2005;431:57–65.

    PubMed  Google Scholar 

  27. Gustilo RB, Anderson JT. Prevention of infection in one thousand and twenty five open fractures of long bones. J Bone Joint Surg Am. 1976;58-A:453–8.

    Google Scholar 

  28. Sanders R, Jersinovich I, Anglen J, et al. The treatment of open tibial shaft fractures using an interlocked intramedullary nail without reaming. J Orthop Trauma. 1994;8:504–10.

    CAS  PubMed  Google Scholar 

  29. Riemer BL, DiChristina DG, Cooper A, et al. Nonreamed nailing of tibial diaphyseal fractures in blunt polytrauma patients. J Orthop Trauma. 1995;9:66–75.

    CAS  PubMed  Google Scholar 

  30. Weber BG, Cech O. Pseudoarthrosis: pathology, biomechanics, therapy, results. Berne: Hans Huber Medical Publisher; 1976.

    Google Scholar 

  31. Balhulkar S, Pande K, Babhulkar S. Nonunion of the diaphysis of long bones. Clin Orthop Relat Res. 2005;431:50–6.

    Google Scholar 

  32. Calori GM, Albisetti W, Agus A, Iori S, Tagliabue L. Risk factors contributing to fracture non-unions. Injury. 2007;38 Suppl 2:S11–8.

    PubMed  Google Scholar 

  33. Calori GM, Phillips M, Jeetle S, Tagliabue L, Giannoudis PV. Classification of non-union: need for a new scoring system? Injury. 2008;39(S2):59–63.

    Google Scholar 

  34. De-Buren N. Causes and treatment of non-union in fractures of the radius and ulna. J Bone Joint Surg Br. 1962;44B:614–25.

    Google Scholar 

  35. Harrold AJ. Failure of union in fractures of the neck of the femur. J Bone Joint Surg Br. 1960;42B:226–35.

    Google Scholar 

  36. Heiple KG, Herndon CH. The pathologic physiology of non-union. Clin Orthop Relat Res. 1965;43:11–21.

    CAS  PubMed  Google Scholar 

  37. Rodriguez-Merchan EC, Forriol F. Nonunion: general principles and experimental data. Clin Orthop Relat Res. 2004;419:4–12.

    PubMed  Google Scholar 

  38. Kyro A, Usenius JP, Aarnio M, Kunnamo I, Avikainen V. Are smokers a risk group for delayed healing of tibial shaft fractures? Ann Chir Gynaecol. 1993;82:254–62.

    CAS  PubMed  Google Scholar 

  39. Schmitz MA, Finnegan M, Natarajan R, Champine J. Effect of smoking on tibial shaft fracture healing. Clin Orthop Relat Res. 1999;365:184–200.

    PubMed  Google Scholar 

  40. Giannoudis PV, MacDonald DA, Matthews SJ, Smith RM, Furlong AJ, De Boer P. Nonunion of the femoral diaphysis: the influence of reaming and non-steroidal anti-inflammatory drugs. J Bone Joint Surg Br. 2000;82:655–8.

    CAS  PubMed  Google Scholar 

  41. Harvey EJ, Agel J, Selznick HS, Chapman JR, Henley MB. Deleterious effect of smoking on healing of open tibia-shaft fractures. Am J Orthop. 2002;31:518–21.

    CAS  PubMed  Google Scholar 

  42. Castillo RC, Bosse MJ, MacKenzie EJ, LEAP study group, et al. Impact of smoking on fracture healing and risk of complications in limb-threatening open tibia fractures. J Orthop Trauma. 2005;19:151–7.

    PubMed  Google Scholar 

  43. Fukuda E, Yasuda I. On the peizoelecrtric effect of bone. J Physiol Soc Jpn. 1957;12:1158–62.

    Google Scholar 

  44. Bassett CAL, Pawluk RJ, Pilla AA. Augmentation of bone repair by inductively coupled electromagnetic fields. Science. 1974;184:575–7.

    CAS  PubMed  Google Scholar 

  45. Bassett CA, Mitchell SN, Schink MM. Treatment of therapeutically resistant non-unions with bone grafts and pulsing electromagnetic fields. J Bone Joint Surg Am. 1982;64:1214–20.

    CAS  PubMed  Google Scholar 

  46. Scott G, King JB. A progressive double blined trial of electrical cxapacitative coupling in the treatment of nonunion of long bones. J Bone Joint Surg Am. 1994;76A:820–6.

    Google Scholar 

  47. Eyres KS, Saleh M, Kanis JA. Effect of pulsed electromagnetic fields on bone formation and bone loss during limb lengthening. Bone. 1996;18:505–9.

    CAS  PubMed  Google Scholar 

  48. Ryaby JT. Clinical effects of electromagnetic and electric fields on fracture healing. Clin Orthop. 1998;(Suppl 355):205–15.

    Google Scholar 

  49. Aaron RK, Ciombor DM, Simon BJ. Treatment of nonunions with electric and electromagnetic fields. Clin Orthop Relat Res. 2004;419:21–9.

    PubMed  Google Scholar 

  50. Bray TJ. A prospective, double-bind trial of electrical capacitive coupling in the treatment of nonunions of long bones. J Bone Joint Surg Am. 1994;76:820–6.

    Google Scholar 

  51. Hagiwara T, Bell WH. Effect of electrical stimulation on mandibular distraction osteogenesis. J Craniomaxillofac Surg. 2000;28:12–9.

    CAS  PubMed  Google Scholar 

  52. Simonis RB, Parnell EJ, Ray PS, Peacock JL. Electrical treatment of tibial non-union: a prospective, randomised, double-blind trial. Injury. 2003;34:357–62.

    CAS  PubMed  Google Scholar 

  53. Perry CR. Bone repair techniques, bone graft and bone graft substitutes. Clin Orthop Relat Res. 1999;360:71–86.

    PubMed  Google Scholar 

  54. Azuma Y, Ito M, Harada Y, Takagi H, Ohta T, Jingushi S. Low intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus. J Bone Miner Res. 2001;16:671–80.

    CAS  PubMed  Google Scholar 

  55. Tsumaki N, Kakiuchi M, Sasaki J, Ochi T, Yoshikawa H. Low-intensity pulsed ultrasound accelerates maturation of callus in patients treated with opening-wedge high tibial osteotomy by hemicallotasis. J Bone Joint Surg Am. 2004;86:2399–405.

    PubMed  Google Scholar 

  56. Claes L, Ruter A, Mayr E. Low-intensity ultrasound enhances maturation of callus after segmental transport. Clin Orthop. 2005;430:189–94.

    PubMed  Google Scholar 

  57. Kanakaris NK, Paliobeis C, Nlanidakis N, Giannoudis PV. Biological enhancement of tibial diaphyseal aseptic non-unions: the efficacy of autologous bone grafting, BMPs and reaming by-products. Injury. 2007;38 Suppl 2:S65–75.

    PubMed  Google Scholar 

  58. West DL, Hawkins BJ, Langerman RJ. The use of extracorporeal shock waves in the treatment of delayed unions and nonunions. Curr Orthop Pract. 2008;19:218–22.

    Google Scholar 

  59. Heckman JD, Ryaby JP, McCabe J, Frey JJ, Kilcoyne RF. Acceleration of tibial fracture healing by non-invasive, low intensity pulsed ultrasound. J Bone Joint Surg Am. 1994;76:26–34.

    CAS  PubMed  Google Scholar 

  60. Cook SD, Ryaby JP, McCabe J, Frey JJ, Heckman JD, Kristiansen TK. Acceleration of tibia and distal radius fracture healing in patients who smoke. Clin Orthop. 1997;337:198–207.

    PubMed  Google Scholar 

  61. Rubin C, Bolander M, Ryaby JP, Hadjiagyrou M. The use of low-intensity ultrasound to accelerate the healing of fractures. J Bone Joint Surg Am. 2001;83:259–70.

    PubMed  Google Scholar 

  62. Johannes EJ, Kaulesar Sukul DM, Matura E. High-energy shock waves for the treatment of nonunions: an experiment on dogs. J Surg Res. 1994;57:246–52.

    CAS  PubMed  Google Scholar 

  63. Wang CJ, Chen HS, Chen CE, Yang KD. Treatment of nonunions of long bone fractures with shock waves. Clin Orthop Relat Res. 2001;387:95–101.

    PubMed  Google Scholar 

  64. Rhinelander FW. Tibial blood supply in relation to fracture healing. Clin Orthop Relat Res. 1974;105:34–81.

    PubMed  Google Scholar 

  65. Bhandari M, Guyatt G, Tornetta 3rd P, Schemitsch EH, Swiontkowski M, Sanders D, Walter SD. Randomized trial of reamed and unreamed intramedullary nailing of tibial shaft fractures. J Bone Joint Surg Am. 2008;90:2567–78.

    PubMed  Google Scholar 

  66. Siebert CH, Lehrbass-Sokeland KP, Rinke F, Hansis M. Compression plating of tibial fractures following primary external fixation. Arch Orthop Trauma Surg. 1997;116:390–5.

    CAS  PubMed  Google Scholar 

  67. Perren SM. The concept of biological plating using the limited contact-dynamic compression plate (LC-DCP): scientific background, design and application. Injury. 1991;22 Suppl 1:1–41.

    PubMed  Google Scholar 

  68. Frigg R. Development of the locking compression plate. Injury. 2003;34 Suppl 2:6–10.

    Google Scholar 

  69. Green SA, Moore TA, Spohn PJ. Nonunion of the tibial shaft. Orthopedics. 1988;11:1149–57.

    CAS  PubMed  Google Scholar 

  70. Paley D. Treatment of tibial nonunion and bone loss with the Ilizarov technique. Instr Course Lect. 1990;39:185–97.

    CAS  PubMed  Google Scholar 

  71. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction. Clin Orthop. 1989;239:263–85.

    PubMed  Google Scholar 

  72. Aronson J. Limb-lengthening, skeletal reconstruction, and bone transport with the Ilizarov method. J Bone Joint Surg Am. 1997;79:1243–58.

    CAS  PubMed  Google Scholar 

  73. Cattaneo R, Catagni M, Johnson EE. The treatment of infected nonunions and segmental defects of the tibia by the methods of Ilizarov. Clin Orthop Relat Res. 1992;280:143–52.

    PubMed  Google Scholar 

  74. Bobroff GD, Gold S, Zinar D. Ten year experience with use of Ilizarov bone transport for tibial defects. Bull Hosp Jt Dis. 2003;61:101–7.

    PubMed  Google Scholar 

  75. Marsh JL, Prokuski L, Biermann JS. Chronic infected tibial nonunions with bone loss: conventional techniques versus bone transport. Clin Orthop Relat Res. 1994;301:139–46.

    PubMed  Google Scholar 

  76. Mekhail AO, Abraham E, Gruber B, Gonzalez M. Bone transport in the management of posttraumatic bone defects in the lower extremity. J Trauma. 2004;56:368–78.

    PubMed  Google Scholar 

  77. Mahaluxmivala J, Nadarajah R, Allen PW, Hill RA. Ilizarov external fixator: acute shortening and lengthening versus bone transport in the management of tibial non-unions. Injury. 2005;36:662–8.

    CAS  PubMed  Google Scholar 

  78. Beals RK, Bryant RE. The treatment of chronic open osteomyelitis of the tibia in adults. Clin Orthop Relat Res. 2005;433:212–7.

    PubMed  Google Scholar 

  79. Patzakis MJ, Zalavras CG. Chronic posttraumatic osteomyelitis and infected nonunion of the Tibia: current management concepts. J Am Acad Orthop Surg. 2005;13:417–27.

    PubMed  Google Scholar 

  80. Watson JT. Distraction osteogenesis. J Am Acad Orthop Surg. 2006;14:s168–74.

    PubMed  Google Scholar 

  81. Saridis A, Panagiotopoulos E, Tyllianakis M, Matzaroglou M, Vandoros N, Lambiris E. The use of the Ilizarov method as a salvage procedure in infected nonunion of the distal femur with bone loss. J Bone Joint Surg Br. 2006;88-B:232–7.

    Google Scholar 

  82. Finkemeier CG. Bone grafting and bone graft substitutes. J Bone J Surg Am. 2002;84:454–64.

    Google Scholar 

  83. Connolly J, Guse R, Lippiello L, Dehne R. Development of an osteogenic bone-marrow preparation. J Bone Joint Surg Am. 1989;71:684–91.

    CAS  PubMed  Google Scholar 

  84. Muschler GF, Boehm C, Easley K. Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J Bone Joint Surg Am. 1997;79:1699–709.

    CAS  PubMed  Google Scholar 

  85. Kesemenli CC, Kapukaya A, Subasi M, Arslan H, Necmioğlu S, Kayikçi C. Early prophylactic autogenous bone grafting in type III open tibial fractures. Acta Orthop Belg. 2004;70:327–31.

    PubMed  Google Scholar 

  86. Khanal GP, Garg M, Singh GK. A prospective randomized trial of percutaneous marrow injection in a series of closed fresh tibial fractures. Int Orthop. 2004;28:167–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Ring D, Allende C, Jafarnia K, et al. Ununited diaphyseal forearm fractures with segmental defects: plate fixation and autogenous cancellous bone grafting. J Bone Joint Surg Am. 2004;86:2440–5.

    PubMed  Google Scholar 

  88. Larson S. Bone substitutes in the treatment of fracture. In: Lemaire R, Bentley G, Scott J, Horan F, Kandugja V, editors. European insructional course lectures. London: European Federation of National Associations of Orthopaedic and Traumatology (EFORT) and The British Society of Bone and Joint Surgery; 2007. p. 36–41.

    Google Scholar 

  89. Dell PC, Burchardt H, Glowczewskie Jr FP. A roentgenographic, biomechanical and histological evaluation of vascularized and non-vascularized segmental fibula canine autografts. J Bone Joint Surg Am. 1985;67:105–12.

    CAS  PubMed  Google Scholar 

  90. Payatakes A, Sotereanos DG. Pedicled vascularized bone grafts for scaphoid and lunate reconstruction. J Am Acad Orthop Surg. 2009;17:744–55.

    PubMed  Google Scholar 

  91. Shaffer JW, Field GA, Goldberg VM, Davy DT. Fate of vascularized and nonvascularized autografts. Clin Orthop Relat Res. 1985;197:32–43.

    PubMed  Google Scholar 

  92. Sunagawa T, Bishop AT, Muramatsu K. Role of conventional and vascularized bone grafts in scaphoid nonunion with osteonecrosis: a canine experimental study. J Hand Surg Am. 2000;25:849–59.

    CAS  PubMed  Google Scholar 

  93. Muramatsu K, Bishop AT. Cell repopulation in vascularized bone grafts. J Orthop Res. 2002;20:772–8.

    PubMed  Google Scholar 

  94. Plakseychuk AY, Kim SY, Park BC, Varitimidis SE, Rubash HE, Sotereanos DG. Vascularized compared with nonvascularized fibular grafting for the treatment of osteonecrosis of the femoral head. J Bone Joint Surg Am. 2003;85:589–96.

    PubMed  Google Scholar 

  95. Munk B, Larsen CF. Bone grafting the scaphoid nonunion: a systematic review of 147 publications including 5,246 cases of scaphoid nonunion. Acta Orthop Scand. 2004;75:618–29.

    PubMed  Google Scholar 

  96. Tiedeman JJ, Garvin KL, Kile TA, et al. The role of a composite, demineralized bone matrix and bone marrow in the treatment of osseous defects. Orthopedics. 1995;18:1153–8.

    CAS  PubMed  Google Scholar 

  97. Ziran B, Cheung S, Smith W, et al. Comparative efficacy of 2 different demineralized bone matrix allografts in treating long bone nonunions in heavy tobacco smokers. Am J Orthop. 2005;34:329–32.

    PubMed  Google Scholar 

  98. Drosos GI, Kazakos KI, Kouzoumpasis P, Verettas DA. Safety and efficacy of commercially available demineralised bone matrix preparations: a critical review of clinical studies. Injury. 2007;4(Suppl):S13–21.

    Google Scholar 

  99. Pieske O, Wittmann A, Zaspel J, Löffler T, Rubenbauer B, Trentzsch H, Piltz S. Autologous bone graft versus demineralized bone matrix in internal fixation of ununited long bones. J Trauma Manag Outcomes. 2009;3:11. doi:10.1186/1752-2897-3-11.

    PubMed Central  PubMed  Google Scholar 

  100. Vaccaro AR. The role of the osteoconductive scaffold in synthetic bone graft. Orthopedics. 2002;25 Suppl 5:s571–8.

    PubMed  Google Scholar 

  101. Shtarker H, Volpin G, Stolero J, Kaushansky A, Samchukov M. Correction of combined angular and rotational deformities by the Ilizarov method. Clin Orthop Relat Res. 2002;402:184–95.

    PubMed  Google Scholar 

  102. Gladbach B, Heijens E, Pfeil J, Paley D. Calculation and correction of secondary translation deformities and secondary length deformities. Orthopedics. 2004;27:760–6.

    PubMed  Google Scholar 

  103. Paley D, Tetsworth K. Mechanical axis deviation of the lower limbs. Preoperative planning of uniapical angular deformities of the tibia or femur. Clin Orthop Relat Res. 1992;280:48–64.

    PubMed  Google Scholar 

  104. Khan K, Bradnock T, Scott C, Robinson CM. Fractures of the clavicle. J Bone Joint Surg Am. 2009;91:447–60.

    PubMed  Google Scholar 

  105. Simpson NS, Jupiter JB. Clavicular nonunion and malunion: evaluation and surgical management. J Am Acad Orthop Surg. 1996;4:1–8.

    PubMed  Google Scholar 

  106. Calder JDF, Solan M, Gidwanil S, Allen S, Ricketts DM. Management of paediatric clavicle fractures – is follow-up necessary? An audit of 346 cases. Ann R Coll Surg Engl. 2002;84:331–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Broadbent MR, Will E, McQueen MM. Prediction of outcome after humeral diaphyseal fracture. Injury Int J. 2009;41:572.

    Google Scholar 

  108. Tajima T, Yoshizu T. Treatment of long-standing dislocation of the radial head in neglected Monteggia fractures. J Hand Surg Am. 1995;20:91–4.

    Google Scholar 

  109. Nagy L, Jankauskas L, Dumont CE. Correction of forearm malunion guided by the preoperative complaint. Clin Orthop Relat Res. 2008;466:1419–28.

    PubMed Central  PubMed  Google Scholar 

  110. Price CT, Knapp DR. Osteotomy for malunited forearm shaft fractures in children. J Pediatr Orthop. 2006;26:193–6.

    PubMed  Google Scholar 

  111. Boardman J, Herman MJ, Buck B, Pizzutillo PD. Hip fractures in children. J Am Acad Orthop Surg. 2009;17:162–73.

    PubMed  Google Scholar 

  112. Canale ST, Beaty JH. Campbell’s operative orthopaedics. Philadelphia: Mosby; 2008. p. 3485–90.

    Google Scholar 

  113. Winquist RA. Closed intramedullary osteotomies of the femur. Clin Orthop Relat Res. 1986;212:155–64.

    PubMed  Google Scholar 

  114. Bråten M, Tveit K, Junk S, Aamodt A, Anda S, Terjesen T. The role of fluoroscopy in avoiding rotational deformity of treated femoral shaft fractures: an anatomical and clinical study. Injury. 2000;31:311–5.

    PubMed  Google Scholar 

  115. Wallace ME, Hoffman EB. Remodelling of angular deformity after femoral shaft fractures in children. J Bone Joint Surg Br. 1992;74:765–9.

    CAS  PubMed  Google Scholar 

  116. Davids JR. Rotational deformity and remodeling after fracture of the femur in children. Clin Orthop Relat Res. 1994;302:27–35.

    PubMed  Google Scholar 

  117. Wade RH, New AM, Tselentakis G, Kuiper JH, Roberts A, Richardson JB. Malunion in the lower limb. A nomogram to predict the effects of osteotomy. J Bone Joint Surg Br. 1999;81:312–6.

    CAS  PubMed  Google Scholar 

  118. Mashru RP, Herman MJ, Pizzutillo PD. Tibial shaft fractures in children and adolescents. J Am Acad Ortho Surg. 2005;13:345–52.

    Google Scholar 

  119. Dwyer AJ, John B, Krishen M, Hora R. Remodeling of tibial fractures in children younger than 12 years. Orthopedics. 2007;30:393–6.

    PubMed  Google Scholar 

  120. Paley D, Tetsworth K. Mechanical axis deviation of the lower limbs. Preoperative planning of multiapical frontal plane angular and bowing deformities of the femur and tibia. Clin Orthop Relat Res. 1992;280:65–71.

    PubMed  Google Scholar 

  121. Chiodo CP, Jupiter JB, Alvarez G, Chandler HP. Oblique osteotomy for multiplanar correction of malunions of the femoral shaft. Clin Orthop Relat Res. 2003;406:185–94.

    PubMed  Google Scholar 

  122. Russell GV, Graves ML, Archdeacon MT, Barei DP, Brien Jr GA, Porter SE. The clamshell osteotomy: a new technique to correct complex diaphyseal malunions. J Bone Joint Surg Am. 2009;91:314–24.

    PubMed  Google Scholar 

  123. Gugenheim Jr JJ, Brinker MR. Bone realignment with use of temporary external fixation for distal femoral valgus and varus deformities. J Bone Joint Surg Am. 2003;85-A:1229–37.

    PubMed  Google Scholar 

  124. Rozbruch SR, Segal K, Ilizarov S, Fragomen AT, Ilizarov G. Does the Taylor Spatial Frame accurately correct tibial deformities. Clin Orthop Relat Res. 2009;468(5):1352–61.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gershon Volpin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 EFORT

About this entry

Cite this entry

Volpin, G., Shtarker, H. (2014). Management of Delayed Union, Non-Union and Mal-Union of Long Bone Fractures. In: Bentley, G. (eds) European Surgical Orthopaedics and Traumatology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34746-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34746-7_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34745-0

  • Online ISBN: 978-3-642-34746-7

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics