Organic Acid and Solvent Production: Propionic and Butyric Acids and Ethanol

  • Mary Jo Zidwick
  • Jiann-Shin Chen
  • Palmer Rogers∗
Reference work entry


Both propionic acid and butyric acid together with their acid salts are incorporated into a large number of commercial products. These include food additives and flavors, preservatives, cellulose-based plastics, drug formulations, and fragrances. In the future, production of these short-chain organic acids by low-cost efficient fermentation processes also may make them attractive as feedstocks for conversion into various industrial chemicals. Ethanol is the key ingredient of alcoholic beverages, and the commercial value of the alcoholic beverages alone would make ethanolic fermentation one of the most important applications of microbial activities. Ethanol is used as an industrial chemical and as a component of healthcare and consumer products, and it is increasingly used in automobile fuel. Yeasts are commonly used in a fermentation to convert sugars into ethanol. Bacterial ethanolic fermentation is gaining importance in the development of processes to convert lignocellulosic biomass into fuel ethanol. As economic conditions and ecological considerations favor the growth of a bio-based chemical industry in the twenty-first century, fermentation-derived organic acids and ethanol will play an increasingly important role as chemical feedstocks and fuel supplement.


Ethanol Production Propionic Acid Butyric Acid Ethanol Tolerance Zymomonas Mobilis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbad-Andaloussi S, Durr C, Raval G, Petitdemange H (1996) Carbon and electron flow in Clostridum butyricum grown in chemostat culture on glycerol and glucose. Microbiol 142:1149–1158CrossRefGoogle Scholar
  2. Abrini J, Naveau H, Nyns E-J (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 16:345–351CrossRefGoogle Scholar
  3. Alam S, Stevens D, Bajpai R (1988) Production of butyric acid by batch fermentation of cheese whey with Clostridium beijerinckii. J Ind Microbiol 2:359–364CrossRefGoogle Scholar
  4. Aldrich HC, McDowell L, Barbosa MF, Yomano LP, Scopes RK, Ingram LO (1992) Immunocytochemical localization of glycolytic and fermentative enzymes in Zymomonas mobilis. J Bacteriol 174:4504–4508PubMedGoogle Scholar
  5. Anonymous (1979) Facts and figures for the U.S. chemical industry—production of organic chemicals. Chem Eng News 11:37Google Scholar
  6. Anonymous (2001a) Chemical prices. Chem Mark Rep 160(17):23–26Google Scholar
  7. Anonymous (2001b) Glycerol, propionic acid, butyric acid. Chem Mark Rep 259(13):30–33Google Scholar
  8. Bahl H, Müller H, Behrens S, Joseph H, Naberhaus F (1995) Expression of heat shock genes in Clostridium acetobutylicum. FEMS Microbiol Rev 17:341–348PubMedCrossRefGoogle Scholar
  9. Baker RC, Kramer RE (1999) Cytotoxicity of short-chain alcohols. Annu Rev Pharmocol Toxicol 39:127–150CrossRefGoogle Scholar
  10. Ballerini D, Desmarquest JP, Pourquie J, Nativel F, Rebeller M (1994) Ethanol production from lignocellulosics: Large scale experimentation and economics. Bioresource Technol 50:17–23CrossRefGoogle Scholar
  11. Barbirato F, Chedaille D, Bories A (1997a) Propionic acid fermentation from glycerol: comparison with conventional substrates. Appl Microbiol Biotechnol 47:441–446CrossRefGoogle Scholar
  12. Barbirato F, Astruc S, Soucaille P, Camarasa C, Salmon JM, Bories A (1997b) Anaerobic pathways of glycerol dissimilation by Enterobacter agglomerans CNCM 1210: limitations and regulations. Microbiology 143:2423–2432PubMedCrossRefGoogle Scholar
  13. Barbirato F, Larguier A, Conte T, Astruc S, Bories A (1997c) Sensitivity to pH, product inhibition, and inhibition by NAD+ of 1,3-propanediol dehydrogenase purified from Enterobacter agglomerans CNCM 1210. Arch Microbiol 168:160–163PubMedCrossRefGoogle Scholar
  14. Barbosa MF, Ingram LO (1994) Expression of the Zymomonas mobilis alcohol dehydrogenase II (adhB) and pyruvate decarboxylase (pdc) genes in Bacillus. Curr Microbiol 28:279–282CrossRefGoogle Scholar
  15. Barik S, Prieto S, Harrison SB, Clausen EC, Gaddy JL (1988) Biological production of alcohols from coal through indirect liquefaction: scientific note. Appl Biochem Biotechnol 18:363–378CrossRefGoogle Scholar
  16. Barker HA (1972) Co-enzyme B12-dependent mutases causing carbon chain rearrangements. In: Boyer PD (ed) The enzymes, vol 6. Academic, New York, pp 509–537Google Scholar
  17. Beall DS, Ingram LO (1993) Genetic engineering of soft-rot bacteria for ethanol production from lignocellulose. J Ind Microbiol 11:151–155CrossRefGoogle Scholar
  18. Benda I (1982) Wine and brandy. In: Reed G (ed) Prescott & Dunn’s industrial microbiology, 4th edn. AVI Publishing, Westport, pp 293–402Google Scholar
  19. Billig E, Bryant DR (1991) Oxoprocess encyclopedia of chemical technology, vol 17, 4th edn. Wiley, New York, pp 903–919Google Scholar
  20. Boyaval P, Seta J, Gavach C (1993) Concentrated propionic acid production by electrodialysis. Enzyme Microb Technol 15:683–686CrossRefGoogle Scholar
  21. Boyaval P, Corre C, Madec MN (1994) Propionic acid production in a membrane bioreactor. Enzyme Microb Technol 16:883–886CrossRefGoogle Scholar
  22. Boyaval P, Corre C (1995) Production of propionic acid. Lait 75:453–461CrossRefGoogle Scholar
  23. Brandt DA (1982) Distilled beverage alcohol. In: Reed G (ed) Prescott & Dunn’s industrial microbiology, 4th edn. AVI Publishing, Westport, pp 468–491Google Scholar
  24. Brau B, Sahm H (1986) Cloning and expression of the structural gene for pyruvate decarboxylase of Zymomonas mobilis in Escherichia coli. Arch Microbiol 144:296–301CrossRefGoogle Scholar
  25. Bringer-Meyer S, Schmiz K-L, Sahm H (1986) Pyruvate decarboxylase from Zymomonas mobilis: isolation and partial characterization. Arch Microbiol 146:105–110CrossRefGoogle Scholar
  26. Brown DP, Ganova-Raevn L, Green BD, Wilkinson SR, Young M, Youngman P (1994) Characterization of spoOA homologues in diverse Bacillus and Clostridium species identifies a probable DNA-binding domain. Molec Microbiol 14:411–426CrossRefGoogle Scholar
  27. Bryant FO, Wiegel J, Ljungdahl LG (1988) Purification and properties of primary and secondary alcohol dehydrogenases from Thermoanaerobacter ethanolicus. Appl Environ Microbiol 54:460–465PubMedGoogle Scholar
  28. Buchholz SE, Dooley MM, Eveleigh DE (1987) Zymomonas—an alcoholic enigma. Trends Biotechnol 5:199–204CrossRefGoogle Scholar
  29. Burdette D, Zeikus JG (1994) Purification of acetaldehyde dehydrogenase and alcohol dehydrogenases from Thermoanaerobacter ethanolicus 39E and characterization of the secondary-alcohol dehydrogenase (2°dh) as a bifunctional alcohol dehydrogenase-acetyl-CoA reductive thioesterase. Biochem J 302:163–170PubMedGoogle Scholar
  30. Burdette DS, Vieille C, Zeikus JG (1996) Cloning and expression of the gene encoding the Thermoanaerobacter ethanolicus 39E secondary-alcohol dehydrogenase and biochemical characterization of the enzyme. Biochem J 316:115–122PubMedGoogle Scholar
  31. Buschhorn H, Dü P, Gottschalk G (1989) Production and utilization of ethanol by homoacetogen Acetobacterium woodii. Appl Environ Microbiol 55:1835–1840PubMedGoogle Scholar
  32. Cann IKO, Stroot PG, Mackie KR, White BA, Mackie RI (2001) Characterization of two novel saccharolytic, anaerobic thermophiles, Thermoanaerobacterium polysaccharolyticum sp. nov. and Thermoanaerobacterium zeae sp. nov., and emendation of the genus Thermoanaerobacterium. Int J Syst Evol Microbiol 51:293–302PubMedGoogle Scholar
  33. Cayol J-L, Ollivier B, Patel BKC, Ravot G, Magot M, Ageron E, Grimont PAD, Garcia J-L (1995) Description of Thermoanaerobacter brockii subsp. lactiethylicus subsp. nov., isolated from a deep subsurface french oil well, a proposal to reclassify Thermoanaerobacter finnii as Thermoanaerobacter brockii subsp. finnii comb. nov., and an emended description of Thermoanaerobacter brockii. Int J Syst Bacteriol 45:783–789PubMedCrossRefGoogle Scholar
  34. Chen J-S (1987) Electron transport in anaerobes. In: Montville TJ (ed) Concepts in physiology and metabolism, vol 1. CRC Press, Boca Raton, pp 61–101Google Scholar
  35. Chen J-S (1993) Properties of acid-and solvent-forming enzymes of clostridia. In: Woods DR (ed) The clostridia and biotechnology. Butterworth-Heinemann, Stoneham, pp 51–76Google Scholar
  36. Chen JS (1995) Alcohol dehydrogenase: multiplicity and relatedness in the solvent-producing clostridia. FEMS Microbiol Rev 17:263–273PubMedCrossRefGoogle Scholar
  37. Clark DP (1989) The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 63:223–234CrossRefGoogle Scholar
  38. Clausen EC, Gaddy JL (1996) Ethanol from biomass by gasification/fermentation. In: Khan MR (ed) Conversion and utilization of waste materials. Taylor & Francis, Washington DC, pp 157–167Google Scholar
  39. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JAE (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826PubMedCrossRefGoogle Scholar
  40. Colomban A, Roger L, Boyaval P (1993) Production of propionic acid from whey permeate by sequential fermentation, ultrafiltration, and cell recycling. Biotechnol Bioeng 42:1091–1098PubMedCrossRefGoogle Scholar
  41. Conway T, Osman YA, Konnan JI, Hoffmann EM, Ingram LO (1987) Promoter and nucleotide sequences of the Zymomonas mobilis pyruvate decarboxylase. J Bacteriol 169:949–954PubMedGoogle Scholar
  42. Conway T, Ingram LO (1989) Similarity of Escherichia coli propanediol oxidoreductase (fucO product) and an unusual alcohol dehydrogenase from Zymomonas mobilis and Saccharomyces cerevisiae. J Bacteriol 171:3754–3759PubMedGoogle Scholar
  43. Cook GM, Rainey FA, Patel BKC, Morgan HW (1996) Characterization of a new obligately anaerobic thermophile, Thermanaerobacter wiegelii sp. nov. Int J Syst Bacteriol 46:123–127PubMedCrossRefGoogle Scholar
  44. Cummins CS, Johnson JL (1986) The genus Propionibacterium. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1346–1353Google Scholar
  45. Demain AL, Rickes EL, Hendlin D, Barnes EC (1961) Nutritional studies on Lactobacillus heterohiochi. J Bacteriol 81:147–153PubMedGoogle Scholar
  46. Depasse E (1945) Vue d'ensemble d'une production industrielle de cétones. Bull Assoc Chim Sucr Distill Fr 62:317–339Google Scholar
  47. Doran JB, Ingram LO (1993) Fermentation of crystalline cellulose to ethanol by Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes. Biotechnol Progr 9:533–538CrossRefGoogle Scholar
  48. Doran JB, Aldrich HC, Ingram LO (1994) Saccharification and fermentation of sugar cane bagasse by Klebsiella oxytoca P2 containing chromosomally integrated genes encoding the Zymomonas mobilis ethanol pathway. Biotechnol Bioeng 44:240–247PubMedCrossRefGoogle Scholar
  49. Dumsday GJ, Zhou B, Yaqin W, Stanley GA, Pamment NB (1999) Comparative stability of ethanol production by Escherichia coli KO11 in batch and chemostat culture. J Ind Microbiol Biotechnol 23:701–708PubMedCrossRefGoogle Scholar
  50. Dürre P, Fischer RJ, Kuhn A, Lorenz K, Schreiber W, Stürzenhofecker B, Ullmann S, Winzer K, Sauer U (1995) Solventogenic enzymes of Clostridium acetobutylicum, catalytic properties, genetic organization and transcriptional regulation. FEMS Microbiol Rev 17:251–262PubMedCrossRefGoogle Scholar
  51. Evans PJ, Wang HY (1990) Effects of extractive fermentation on butyric acid production by Clostridium acetobutylicum. Appl Microbiol Biotechnol 32:393–397CrossRefGoogle Scholar
  52. Fayolle F, Marchal R, Ballerini D (1990) Effect of controlled substrate feeding on butyric acid production by Clostridium tyrobutyricum. J Indust Microbiol 6:179–183CrossRefGoogle Scholar
  53. Feldmann S, Sprenger GA, Sahm H (1989) Ethanol production from xylose with a pyruvate-formate-lyase mutant of Klebsiella planticola carrying a pyruvate-decarboxylase gene from Zymomonas mobilis. Appl Microbiol Biotechnol 31:152–157CrossRefGoogle Scholar
  54. Fischer RJ, Helms J, Dü P (1993) Cloning, sequencing and molecular analysis of the sol operon of Clostridium acetobutylicum, a chromosomal locus involved in solventogenesis. J Bacteriol 175:6959–6969PubMedGoogle Scholar
  55. Fitz A (1878) Über spaltpilzgärungen, IV Bericht der Deutsch. Chem Ges 11:1890CrossRefGoogle Scholar
  56. Gauss WF, Suzuki S, Takagi M (1976) US Patent 3,990,944Google Scholar
  57. Girbal L, Croux C, Vasconcelos I, Soucaille P (1995a) Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiol Rev 17:287–297CrossRefGoogle Scholar
  58. Girbal L, Vasoncelos I, Saint-Amans S, Soucaille P (1995b) How neutral red modified carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH. FEMS Microbiol Rev 16:151–162CrossRefGoogle Scholar
  59. Goodlove PE, Cunningham PR, Parker J, Clark DP (1989) Cloning and sequence analysis of the fermentative alcohol-dehydrogenase-encoding gene of Escherichia coli. Gene 85:209–214PubMedCrossRefGoogle Scholar
  60. Gottschalk G (1986) Bacterial metabolism, 2nd edn. Springer, New York, pp 97–98CrossRefGoogle Scholar
  61. Grethlein AJ, Worden RM, Jain MK, Datta R (1990) Continuous production of mixed alcohols and acids from carbon monoxide. Appl Biochem Biotechnol 24–25:875–884CrossRefGoogle Scholar
  62. Gu Z, Glatz BA, Glatz CE (1998) Propionic acid production by extractive fermentation. I: solvent consideration. Biotechnol Bioeng 57:454–461PubMedCrossRefGoogle Scholar
  63. Gu Z, Rickert DA, Glatz BA, Glatz CE (1999) Feasibility of propionic acid production by extractive fermentation. Lait 79:137–148CrossRefGoogle Scholar
  64. Helbert JR (1982) Beer. In: Reed G (ed) Prescott & Dunn’s industrial microbiology, 4th edn. AVI Publishing, Westport, pp 403–467Google Scholar
  65. Himmel ME, Adney WS, Grohmann K, Tucker MP (1994) US Patent 5,275,944Google Scholar
  66. Himmel ME, Adney WS, Baker JO, Elander R, McMillan JD, Nieves RA, Sheehan JJ, Thomas SR, Vinzant TB, Zhang M (1997) Advanced bioethanol production technologies: a perspective. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass. American Chemical Society, Washington, DC, pp 2–45, ACS Symposium Series 666CrossRefGoogle Scholar
  67. Himmi EH, Bories A, Boussaid A, Hassani L (2000) Propionic acid fermentation of glycerol and glucose by Propionibacterium acidipropionici and Propionibacterium freudenreichii ssp. shermanii. Appl Microbiol Biotechnol 53:435–440PubMedCrossRefGoogle Scholar
  68. Hippe H, Andresen JR, Gottschalk G (1991) The genus Clostridium, non-medical. In: Balows HG, Truper M, Dworkin WH, Schleifer KH (eds) The prokaryotes. Springer, New York, pp 1799–1866Google Scholar
  69. Holland-Staley CA, Lee K, Clark DP, Cunningham PR (2000) Aerobic activity of Escherichia coli alcohol dehydrogenase is determined by a single amino acid. J Bacteriol 18(2):6049–6054CrossRefGoogle Scholar
  70. Hoppner TC, Doelle HW (1983) Purification and kinetic characteristics of pyruvate decarboxylase and ethanol dehydrogenase from Zymomonas mobilis in relation to ethanol production. Eur J Appl Microbiol Biotechnol 17:152–157CrossRefGoogle Scholar
  71. Houge C (2000) Getting the MTBE out. Chem Eng News, p. 6Google Scholar
  72. Hsu ST, Yang ST (1991) Propionic acid fermentation of lactose by Propionibacterium acidipropionici—effects of pH. Biotechnol Bioeng 38:571–578PubMedCrossRefGoogle Scholar
  73. Huff GF, Yata N (1976) US Patent 3,990,945Google Scholar
  74. Ingram LO, Buttke TM (1984) Effects of alcohols on micro-organisms. Adv Microb Physiol 25:253–300PubMedCrossRefGoogle Scholar
  75. Ingram LO (1986) Microbial tolerance to alcohols: role of the cell membrane. Trends Biotechnol 4:40–44CrossRefGoogle Scholar
  76. Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420–2425PubMedGoogle Scholar
  77. Ingram LO, Conway T (1988) Expression of different levels of ethanologenic enzymes from Zymomonas mobilis in recombinant strains of Escherichia coli. Appl Environ Microbiol 54:397–404PubMedGoogle Scholar
  78. Ingram LO, Dombek KM (1989) Effects of ethanol on Escherichia coli. In: van Uden N (ed) Alcohol toxicity in yeasts and bacteria. CRC Press, Boca Raton, pp 227–237Google Scholar
  79. Ingram LO (1990) Ethanol tolerance in bacteria. Crit Rev Biotechnol 9:305–319PubMedCrossRefGoogle Scholar
  80. Ingram LO, Alterthum F, Conway T (1991) US Patent 5,000,000Google Scholar
  81. Ingram LO, Clark DC (1992) US Patent 5,028,539Google Scholar
  82. Ingram LO, Doran JB (1995) Conversion of cellulosic materials to ethanol. FEMS Microbiol Rev 16:235–241CrossRefGoogle Scholar
  83. Ingram LO, Beall DS, Burchhardt GFH, Guimaraes WV, Ohta K, Wood BE, Shanmugam KT, Fowler DE, Ben-Bassat A (1995) US Patent 5,424,202Google Scholar
  84. Ingram LO, Barbosa-Alleyne MDF (1996) US Patent 5,482,846Google Scholar
  85. Ingram LO, Ohta KW, B. E. (1998) US Patent 5821093Google Scholar
  86. Ingram LO, Gomez PF, Lai X, Moniruzzaman M, Wood BE, Yamano LP, York SW (1998) Metabolic engineering of bacteria for ethanol production. Biotechnol Bioeng 58:204–214PubMedCrossRefGoogle Scholar
  87. Ingram LO, Aldrich HC, Borges ACC, Causey TB, Martinez A, Morales F, Saleh A, Underwood SA, Yomano LP, York SW, Zaldivar J, Zhou S (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Progr 15:855–866CrossRefGoogle Scholar
  88. Jackson MD, Moyer CB (1991) Alcohol fuels. In: Kroschwitz JI, Howe-Grant M (eds) Kirk-Othmer encyclopedia of chemical technology, vol 1, 4th edn. Wiley, New York, pp 826–864Google Scholar
  89. Jan G, Rouault A, Maubois JL (2000) Acid stress susceptibility and acid adaptation of Propionibacterium freudenreichii subsp. shermanii. Lait 80:325–336CrossRefGoogle Scholar
  90. Jan G, Leverrier P, Pichereau V, Boyaval P (2001) Changes in protein synthesis and morphology during acid adaptation of Propionibacterium freudenreichii. Appl Environ Microbiol 67:2029–2036PubMedCrossRefGoogle Scholar
  91. Jin ZW, Yang ST (1998) Extractive fermentation for enhanced propionic acid production from lactose by Propionibacterium acidipropionici. Biotechnol Prog 14:457–465PubMedCrossRefGoogle Scholar
  92. Joachimsthal E, Haggett KD, Jang J-H, Rogers PL (1998) A mutant of Zymomonas mobilis ZM4 capable of ethanol production from glucose in the presence of high acetate concentrations. Biotechnol Lett 20:137–142CrossRefGoogle Scholar
  93. Jones DT (1993) Mutagenesis and its application to biotechnology. In: Woods DR (ed) The clostridia and biotechnology. Butterworth-Heinemann, London, pp 77–98Google Scholar
  94. Keshav KF, Yomano LP, An H, Ingram LO (1990) Cloning of the Zymomonas mobilis structural gene encoding alcohol dehydrogenase I (adhA): Sequence comparison and expression in Escherichia coli. J Bacteriol 172:2491–2497PubMedGoogle Scholar
  95. Kessler D, Leibrecht I, Knappe J (1991) Pyruvate-formate-lyase-deactivase and acetyl-Co reductase activities of Escherichia coli reside on a polymeric protein particle encoded by adhE. FEBS Lett 281:59–63PubMedCrossRefGoogle Scholar
  96. Kessler D, Herth W, Knappe J (1992) Ultrastructure and pyruvate formate-lyase radical quenching property of the multienzymic AdhE protein of Escherichia coli. J Biol Chem 267:18073–18079PubMedGoogle Scholar
  97. Kiatpapan P, Hashimoto Y, Nakamura H, Piao Y-Z, Ono H, Yamashita M, Murooka Y (2000) Characterization of pRG01, a plasmid from Propionibacterium acidipropionici, and its use for development of a host-vector system in propionibacteria. Appl Environ Microbiol 66:4688–4695PubMedCrossRefGoogle Scholar
  98. Kinoshita S, Kakizono T, Kadota K, Das K, Taguchi H (1985) Purification of two alcohol dehydrogenases from Zymomonas mobilis and their properties. Appl Microbiol Biotechnol 22:249–254CrossRefGoogle Scholar
  99. Kitahara K, Kaneko T, Goto O (1957) Taxonomic studies on the hiochi-bacteria specific saprophytes of sake. I: isolation and grouping of bacterial strains. J Gen Appl Microbiol (Japan) 3:102–110CrossRefGoogle Scholar
  100. Klapatch RR, Guerinot ML, Lynd LR (1996) Electrotransformation of Clostridium thermosaccharolyticum. J Ind Microbiol 16:342–347PubMedCrossRefGoogle Scholar
  101. Klasson KT, Ackerson MD, Clausen EC, Gaddy JL (1992) Bioconversion of synthesis gas into liquid or gaseous fuels. Enzyme Microb Technol 14:602–608CrossRefGoogle Scholar
  102. Korkhin Y, Kalb(Gilboa) AJ, Peretz M, Bogin O, Burstein Y, Frolow F (1998) NADP-dependent bacterial alcohol dehydrogenases: crystal structure, cofactor-binding and cofactor specificity of the ADHs of Clostridium beijerinckii and Thermoanaerobacter brockii. J Mol Biol 278:967–981PubMedCrossRefGoogle Scholar
  103. Kosaric N (1996) Ethanol-potential source of energy and chemical products. In: Rehm H-J, Reed G (eds) Biotechnology. VCH, New York, pp 123–203Google Scholar
  104. Kusano K, Yamada H, Niwa M, Yamasoto K (1997) Propionibacterium cyclohexanicum sp. nov., a new acid-tolerant omega-cyclohexy/fatty acid-containing propionibacterium isolated from spoiled orange juice. Int J Syst Bacteriol 47:825–831PubMedCrossRefGoogle Scholar
  105. Lamed RJ, Zeikus JG (1981) Novel NADP-linked alcohol-aldehyde/ketone oxidoreductase in thermophilic ethanologenic bacteria. Biochem J 195:183–190PubMedGoogle Scholar
  106. Larsen L, Nielsen P, Ahring BK (1997) Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Arch Microbiol 168:114–119PubMedCrossRefGoogle Scholar
  107. Lee Y-E, Jain MK, Lee C, Lowe SE, Zeikus JG (1993) Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb. nov., and Thermoanaerobacter thermosulfurigenes comb. nov., and Thermoanaerobacter thermohydrosulfuricus comb. nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int J Syst Bacteriol 43:41–51CrossRefGoogle Scholar
  108. Lefranc L et Cie (1923) A process for the manufacture of butyric acid and other fatty acids with recovery of the gases of fermentation. British Patent 186–572. Chem Abstr 17:324Google Scholar
  109. Lewis VP, Yang ST (1992) Continuous propionic acid fermentation by immobilized Propionibacterium acidipropionici in a novel packed bed bioreactor. Biotechnol Bioeng 40:465–474PubMedCrossRefGoogle Scholar
  110. Linden JC, Kuhn RH (1989) Biochemistry of alcohol effects on clostridia. In: van Uden N (ed) Alcohol toxicity in yeasts and bacteria. CRC Press, Boca Raton, pp 271–291Google Scholar
  111. Lindsay SE, Bothast RJ, Ingram LO (1995) Improved strains of recombinant Escherichia coli for ethanol production from sugar mixture. Appl Microbiol Biotechnol 43:70–75PubMedCrossRefGoogle Scholar
  112. Liu S-Y, Rainey FA, Morgan HW, Mayer F, Wiegel J (1996) Thermoanaerobacterium aotearoense sp. nov., a slightly acidophilic, anaerobic thermophile isolated from various hot springs in New Zealand, and emendation of the genus Thermoanaerobacterium. Int J Syst Bacteriol 46:388–396CrossRefGoogle Scholar
  113. Logsdon JE (1994) Ethanol. In: Kroschwitz JI, Howe-Grant M (eds) Kirk-Othmer encyclopedia of chemical technology, vol 9, 4th edn. Wiley, New York, pp 812–860Google Scholar
  114. Lowe SE, Jain MK, Zeikus JG (1993) Biology, ecology, and biotechnological applications of anaerobic bacteria adapted to environmental stresses in temperature, pH, salinity, or substrates. Microbiol Rev 57:451–509PubMedGoogle Scholar
  115. Lowenheim FA, Moran MK (1975) Industrial chemicals, 4th edn. Wiley, New YorkGoogle Scholar
  116. Lugar RG, Woolsey RJ (1999) The new petroleum. Foreign Aff 78:88–102CrossRefGoogle Scholar
  117. Lynd LR (1989) Ethanol production from lignocellulosic substrates using thermophilic bacteria. Adv Biochem Eng Biotechnol 38:1–52Google Scholar
  118. Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251:1318–1323PubMedCrossRefGoogle Scholar
  119. Lynd LR, Baskaran S, Casten S (2001) Salt accumulation resulting from base added for pH control, and not ethanol, limits growth of Thermoanaerobacterium thermosaccharolyticum HG-8 at elevated feed xylose concentrations in continuous culture. Biotechnol Prog 17:118–125PubMedCrossRefGoogle Scholar
  120. Lyon WJ, Glatz BA (1995) Propionibacteria. In: Hui YH, Khachatourians GG (eds) Food biotechnology, microorganisms. VCH, New York, pp 703–719Google Scholar
  121. Mackenzie KF, Eddy CK, Ingram LO (1989) Modulation of alcohol dehydrogenase isoenzyme levels in Zymomonas mobilis by iron and zinc. J Bacteriol 171:1063–1067PubMedGoogle Scholar
  122. Mai V, Wiegel J (2000) Advances in development of a genetic system for Thermoanaerobacterium spp.: expression of genes encoding hydrolytic enzymes, development of a second shuttle vector, and integration of genes into chromosome. Appl Environ Microbiol 66:4817–4821PubMedCrossRefGoogle Scholar
  123. Mai V, Lorenz WW, Wiegel J (1997) Transformation of Thermoanaerobacterium sp. strain JW/SL-YS485 with plasmid pIKM1 conferring kanamycin resistance. FEMS Microbiol Lett 148:163–167CrossRefGoogle Scholar
  124. Martin ME, Wayman M, Graf G (1961) Fermentation of sulfite waste liquor to produce organic acids. Can J Microbiol 7:341–346PubMedCrossRefGoogle Scholar
  125. McCoy M (1998) Biomass ethanol inches forward. Chem Eng News 76:29–32Google Scholar
  126. McLellan PJ, Daugulis AJ, Li J (1999) The incidence of oscillatory behavior in the continuous fermentation of Zymomonas mobilis. Biotechnol Prog 15:667–680PubMedCrossRefGoogle Scholar
  127. Mermelstein LD, Welker NE, Petersen DJ, Bennett GN, Papoutsakis ET (1994) Genetic and metabolic engineering of Clostridum acetobutylicom. ATCC 824. Ann NY Acad Sci 721:54–68PubMedCrossRefGoogle Scholar
  128. Michel-Savin D, Marchal R, Vandecasteele JP (1990a) Control of the selectivity of butyric acid production and improvement of fermentation performance with Clostridium tyrobutyricum. Appl Microbiol Biotechnol 32:387–392CrossRefGoogle Scholar
  129. Michel-Savin D, Marchal R, Vandecasteele JP (1990b) Butyrate production in continuous culture of Clostridum tyrobutyricum. Appl Microbiol Biotechnol 33:127–131CrossRefGoogle Scholar
  130. Michel-Savin D, Marchal R, Vandecasteele JP (1990c) Butyric fermentation: metabolic behavior and production performance of Clostridium tryobutyricum in a continuous culture with cell recycle. Appl Microbiol Biotechnol 34:172–177CrossRefGoogle Scholar
  131. Minton NP, Brehm JK, Swinfield TJ, Whelan SW, Mauchline ML, Bodsworth N, Oultrum JD (1993) Clostridial cloning vectors. In: Woods DR (ed) The clostridia and biotechnology. Butterworth-Heinemann, London, pp 120–150Google Scholar
  132. Mishra P, Kaur S (1991) Lipids as modulators of ethanol tolerance in yeast. Appl Microbiol Biotechnol 34:697–702CrossRefGoogle Scholar
  133. Morris JG (1993) History and future potential of the clostridia in biotechnology. In: Woods DR (ed) The clostridia and biotechnology. Butterworth-Heinemann, London, pp 1–23Google Scholar
  134. Nair RV, Bennett GN, Papoutsakis ET (1994) Molecular characterization of an alcohol/aldehyde dehydrogenase gene of Clostridium acetobutylicum ATCC 824. J Bacteriol 176:871–885PubMedGoogle Scholar
  135. Nakano MM, Dailly YP, Zuber P, Clark DP (1997) Characterization of anaerobic fermentative growth of Bacillus subtilis: identification of fermentation end products and genes required for growth. J Bacteriol 179:6749–6755PubMedGoogle Scholar
  136. Neale AD, Scopes RK, Kelly JM, Wettenhall REH (1986) The two alcohol dehyrogenases of Zymomonas mobilis: purification by differential dye ligand chromatography, molecular characterisation and physiological roles. Eur J Biochem 154:119–124PubMedCrossRefGoogle Scholar
  137. Neale AD, Scopes RK, Wettenhall REH, Hoogenraad NJ (1987) Nucleotide sequence of the pyruvate decarboxylase gene from Zymomonas mobilis. Nucleic Acids Res 15:1753–1761PubMedCrossRefGoogle Scholar
  138. Neale AD, Scopes RK, Kelly JM (1988) Alcohol production from glucose and xylose using Escherichia coli containing Zymomonas mobilis genes. Appl Microbiol Biotechnol 29:162–167Google Scholar
  139. Nishikawa M, Brancon RMR, Pinder KL, Strasdine GA (1970) Fermentation of spent sulfite liquor to produce acetic acid, propionic acid and vitamin B12. Pulp and Paper Magazine of Canada 71(3):T59–T64Google Scholar
  140. Nölling J, Breton G, Omelchenko MV, Markarova KS, Zeng Q, Gibson R, Lee HM, DuBois J, Qiu D, Hitti J, GTC Sequencing Center Production, Finishing, and Bioinformatics Teams, Wolf YI, Tatusov RL, Sabathe F, Doucette-Stamm L, Soucaille P, Daly MJ, Bennett GN, Koonin EV, Smith DR (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838PubMedCrossRefGoogle Scholar
  141. Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991a) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase I. Appl Environ Microbiol 57:893–900PubMedGoogle Scholar
  142. Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991b) Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl Environ Microbiol 57:2810–2815PubMedGoogle Scholar
  143. O'Mullan PJ, Buchholz SE, Chase T Jr, Eveleigh DE (1995) Roles of alcohol dehydrogenases of Zymomonas mobilis (ZADH): characterization of a ZADH-2-negative mutant. Appl Microbiol Biotechnol 43:675–678CrossRefGoogle Scholar
  144. Paik HD, Glatz BA (1994) Propionic acid production by immobilized cells of a propionate-tolerant strain of Propionibacterium acidipropionici. Appl Microbiol Biotechnol 42:22–27PubMedCrossRefGoogle Scholar
  145. Palosaari NR, Rogers P (1988) Purification and properties of the inducible coenzyme A-linked butyraldehyde dehydrogenase from Clostridium acetobutylicum. J Bacteriol 170:2971–2976PubMedGoogle Scholar
  146. Papanikolaou S, Ruiz-Sanchez P, Pariset B, Blanchard F, Fick M (2000) High production of 1,3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. J Biotechnol 77:191–208PubMedCrossRefGoogle Scholar
  147. Papoutsakis ET, Bennett GN (1993) Cloning, structure, and expression of acid and solvent pathway genes of Clostridium acetobutylicum. In: Woods DR (ed) The clostridia and biotechnology. Butterworth-Heinemann, London, pp 157–200Google Scholar
  148. Papoutsakis ET, Bennett GN (1999) Molecular regulation and metabolic engineering of solvent production by Clostridium acetobutylicum. In: Papoutsakis ET, Lee SY (eds) Bioprocess technology, vol 24. Marcel Dekker, New York, pp 253–279Google Scholar
  149. Pasteur L (1861a) Animalcules infusoires vivant sans gaz oxygène libre et déterminant des fermentations. Comp Rend 52:344–347Google Scholar
  150. Pasteur L (1861b) Mémoire sur les corpuscles organisés qui éxistent dans l’atmosphere: Esamen de la doctrine des générations spontanées. Ann Sci Nat 16:5–98, 4th seriesGoogle Scholar
  151. Pasteur L (1879) Studies on fermentation. Macmillan, LondonGoogle Scholar
  152. Peretz M, Bogin O, Tel-Or S, Cohen A, Li G, Chen J-S, Burstein Y (1997) Molecular cloning, nucleotide sequencing, and expression of genes encoding alcohol dehydrogenase from the thermophile Thermoanaerobacter brockii and the mesophile Clostridium beijerinckii. Anaerobe 3:259–270PubMedCrossRefGoogle Scholar
  153. Perozich J, Nicholas H, Wang BC, Lindahl R, Hempel J (1999) Relationships within the aldehyde dehydrogenase extended family. Protein Sci 8:137–146PubMedCrossRefGoogle Scholar
  154. Petitdemange H, Cherrier C, Raval G, Gay R (1976) Regulation of NADH and NADPH ferredoxin oxidoreductases in clostridia of the butyric group. Biochem Biophys Acta 421:334–347PubMedCrossRefGoogle Scholar
  155. Philips JR, Clausen EC, Gaddy JL (1994) Synthesis gas as substrate for the biological production of fuels and chemicals. Appl Biochem Biotechnol 45–46:145–157CrossRefGoogle Scholar
  156. Piveteau P (1999) Metabolism of lactate and sugars by dairy propionibacteria: a review. Lait 79:23–41CrossRefGoogle Scholar
  157. Playne MJ (1985) Propionic acid and butyric acid. In: Moo-Young M (ed) Comprehensive biotechnology. Pergamon, New York, pp 731–755Google Scholar
  158. Prescott SC, Dunn CG (1949) Industrial microbiology, 2nd edn. McGraw-Hill, New York, pp 477–486Google Scholar
  159. Quesada-Chanto A, Afschar AS, Wagner F (1994a) Microbial production of propionic acid and vitamin B-12 using molasses or sugar. Appl Microbiol Biotechnol 41:378–383PubMedGoogle Scholar
  160. Quesada-Chanto A, Afschar AS, Wagner F (1994b) Optimization of a Propionibacterium acidipropionici continuous culture utilization of sucrose. Appl Microbiol Biotechnol 42:16–21CrossRefGoogle Scholar
  161. Quesada-Chanto A, da Costa JPCL, Silveira MM, Schroeder AG, Schmidt-Meyer AC, Jona R (1998a) Influence of different vitamin-nitrogen sources on cell growth and propionic acid production from sucrose by Propionibacterium shermanii. Acta Biotechnologia 18:267–274CrossRefGoogle Scholar
  162. Quesada-Chanto A, Silveira MM, Schmidt-Meyer AC, Schroeder AG, da Costa JPCL, Lopez J, Carvalho-Jonas MF, Artolozaga MJ, Jona R (1998b) Effect of oxygen supply on pattern of growth and corrinoid and organic acid production of Propionibacterium shermanii. Appl Microbiol Biotechnol 49:732–736CrossRefGoogle Scholar
  163. Ragsdale SW, Riordan CG (1996) The role of nickel in acetyl-CoA synthesis by the bifunctional enzyme CO dehydrogenase/acetyl-CoA synthase: enzymology and model chemistry. J Biol Inorg Chem 1:489–493CrossRefGoogle Scholar
  164. Rani KS, Seenayya G (1999) High ethanol tolerance of new isolates of Clostridium thermocellum strains SS21 and SS22. World J Microbiol Biotechnol 15:173–178CrossRefGoogle Scholar
  165. Reed G (1982) Production of fermentation alcohol as a fuel source. In: Reed G (ed) Prescott & Dunn’s industrial microbiology, 4th edn. AVI Publishing, Westport, pp 835–859Google Scholar
  166. Rehberger JL, Glatz BA (1998) Response of cultures of Propionibacterium to acid and low pH tolerance and inhibition. J Food Protect 61:211–216Google Scholar
  167. Reid MF, Fewson CA (1994) Molecular characterization of microbial alcohol dehydrogenases. Crit Rev Microbiol 20:13–56PubMedCrossRefGoogle Scholar
  168. Reynen M, Sahm H (1988) Comparison of the structural genes for pyruvate decarboxylase in different Zymomonas mobilis strains. J Bacteriol 170:3310–3313PubMedGoogle Scholar
  169. Reysset G, Sebald M (1993) Transformation/electrotransformation of clostridia. In: Woods DR (ed) The clostridia and biotechnology. Butterworth-Heinemann, London, pp 151–158Google Scholar
  170. Rickert DA, Glatz CE, Glatz BA (1998) Improved organic acid production by calcium alginate-immobilized propionibacteria. Enzyme Microb Technol 22:409–414CrossRefGoogle Scholar
  171. Rogers P (1999) Clostridia: solvent formation. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation, vol 2. Wiley, New York, pp 670–687Google Scholar
  172. Rogers P, Gottschalk G (1993) Biochemistry and regulation of acid and solvent production in clostridia. In: Woods DR (ed) The clostridia and biotechnology. Butterworth-Heinemann, Stoneham, pp 25–50Google Scholar
  173. Rogers PL, Lee KJ, Skotnicki ML, Tribe DE (1982) Ethanol production by Zymomonas mobilis. Adv Biochem Eng 23:37–84Google Scholar
  174. Rogers PL, Lee KJ, Smith GM, Barrow KD (1989) Ethanol tolerance of Zymomonas mobilis. In: van Uden N (ed) Alcohol toxicity in yeasts and bacteria. CRC Press, Boca Raton, pp 239–256Google Scholar
  175. Rudolph FB, Purich DL, Fromm HJ (1968) Coenzyme A-linked aldehyde dehydrogenase from Escherichia coli. I: partial purification, properties, and kinetic studies of the enzyme. J Biol Chem 243:5539–5545PubMedGoogle Scholar
  176. Saint-Amans S, Girbal L, Andrade J, Ahrens K, Soucaille P (2001) Regulation of carbon and electron flow in Clostridium butyricum VP 13266 g grown on glucose-glycerol mixtures. Bacteriol 183:1748–1754CrossRefGoogle Scholar
  177. Sauer ET (1991) Carboxylic acids (economic aspects). In: Encyclopedia of chemical technology, vol 5, 4th edn. Wiley, New York, pp 179–187Google Scholar
  178. Sauer U, Santangelo JD, Trever A, Bucholz M, Dürre P (1995) Sigma factor and sporulation genes in Clostridium. FEMS Microbiol Rev 17:331–340PubMedCrossRefGoogle Scholar
  179. Scopes RK (1983) An iron-activated alcohol dehydrogenase. FEBS Lett 156:303–306PubMedCrossRefGoogle Scholar
  180. Sheehan J (2000) The road to bioethanol: a strategic perspective of the U.S. Department of Energy’s national ethanol program. In: HM E, Baker JO, Saddler JN (eds) Glycosyl hydrolases for biomass conversion, vol 769. American Chemical Society, Washington, DC, pp 2–25, ACS Symposium SeriesCrossRefGoogle Scholar
  181. Shen GJ, Annons BA, Lovitt RW, Jain MK, Zeikus JG (1996) Biochemical route and control if butyrate synthesis in Butyribacterium methylotropicum. Appl Microbiol Biotechnol 45:355–362CrossRefGoogle Scholar
  182. Sherman JM, Shaw RH (1923) Process for the production of propionates and propionic acid. US Patent 1,470,885 Chem Abstr 18:146Google Scholar
  183. Shoham Y, Lamed R, Bayer EA (1999) The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol 7:275–281PubMedCrossRefGoogle Scholar
  184. Shone CC, Fromm HJ (1981) Steady-state and pre-steady-state kinetics of coenzyme A linked aldehyde dehydrogenase from Escherichia coli. Biochemistry 20:7494–7501PubMedCrossRefGoogle Scholar
  185. Silveira MM, Wisbeck E, Hoch I, Jonas R (2001) Production of glucose-fructose oxidoreductase and ethanol by Zymomonas mobilis ATCC 29191 in medium containing corn steep liquor as a source of vitamins. Appl Microbiol Biotechnol 55:442–445PubMedCrossRefGoogle Scholar
  186. Sinskey AJ, Akedo M, Cooney CL (1981) Acrylate fermentations. In: Hollaender A (ed) Trends in the biology of fermentations. Plenum Press, New York, pp 473–492CrossRefGoogle Scholar
  187. Slapack GE, Russell I, Stewart GG (1987) Thermophilic microbes in ethanol production. CRC Press, Boca RatonGoogle Scholar
  188. Société Lefranc et Cie. (1925) An improved process for the manufacture of dipropylketone. British Patent 216–120. Chem Abstr 19:77Google Scholar
  189. Solichien MS, O'Brien D, Hammond EG, Glatz CE (1995) Membrane-based extractive fermentation to produce propionic and acetic acids: toxicity and mass transfer considerations. Enzyme Microb Technol 17:23–31CrossRefGoogle Scholar
  190. Strecker A (1854) Über eine eigentümliche Bildungsweise der Propionsaüre und einige Salze derselben. Ann Chem 92:80CrossRefGoogle Scholar
  191. Swick RW, Wood HG (1960) The role of transcarboxylation in propionic acid fermentation. Proc Natl Acad Sci USA 46:28–41PubMedCrossRefGoogle Scholar
  192. Swings J, De Ley J (1977) The biology of Zymomonas. Bacteriol Rev 41:1–46PubMedGoogle Scholar
  193. Swings J, De Ley J (1984) Genus Zymomonas. In: Krieg NR, Holt JG (eds) [{} Bergey’s Manual of Systematic Bacteriology]. Williams and Wilkins, Baltimore 1:576–580
  194. Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int J Syst Bacteriol 43:232–236PubMedCrossRefGoogle Scholar
  195. Thauer RK, Jungerman K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180PubMedGoogle Scholar
  196. Thayer A (2000) Challenges of a biobased economy. C & EN 29:40Google Scholar
  197. Thomas SR, Adney WS, Baker JO, Chou Y-C, Himmel ME (1997) US Patent 5,712,142Google Scholar
  198. Tolan JS, Finn RK (1987) Fermentation of d-xylose and l-arabinose to ethanol by Erwinia chrysanthemi. Appl Environ Microbiol 53:2033–2044PubMedGoogle Scholar
  199. Toth J, Ismaiel AA, Chen J-S (1999) Purification of a coenzyme A-acylating aldehyde dehydrogenase and cloning of the structural gene from Clostridium beijerinckii NRRL B593. Appl Environ Microbiol 65:4973–4980PubMedGoogle Scholar
  200. Uchida K (1974) Lipids of alcoholophilic lactobacilli. II: occurrence of polar lipids with unusually long acyl chains in Lactobacillus heterochiochii. Biochim Biophys Acta 369:146–155PubMedCrossRefGoogle Scholar
  201. Uchida K (1975a) Alteration of the unsaturated to saturated ratio of fatty acids in bacterial lipids by alcohols. Agric Biol Chem 39:1515–1516CrossRefGoogle Scholar
  202. Uchida K (1975b) Effects of cultural conditions on the cellular fatty acid composition of Lactobacillus heterohiochii, an alcoholophilic bacterium. Agric Biol Chem 39:837–842CrossRefGoogle Scholar
  203. Van Andel JG, Zoutberg GR, Crabbendam PM, Breure AM (1985) Glucose fermentation by Clostridium butyricum grown under a self-generated gas atmosphere in chemostat culture. Appl Microbiol Biotechnol 23:21–26CrossRefGoogle Scholar
  204. Van Niel CB (1928) The propionic acid bacteria (thesis) Laboratorium voor Microbiologie der Techische Hoogeschool Delft, N.V. Uitgeversaak, J. W. Boissevain & Co Haarlem, The NetherlandsGoogle Scholar
  205. Vandak D, Telgarsky M, Sturkik E (1995a) Influence of growth factor components on butyrate production form sucrose by Clostridium butyricum. Folia Microbiol 40:32–42CrossRefGoogle Scholar
  206. Vandak D, Zigova TM, Sturdik E (1995b) Effect of growth supplements and whey pretreatment on butyric acid production by Clostridium butyricum. World J Microbiol Biotechnol 11:363CrossRefGoogle Scholar
  207. Vandak D, Zigova J, Sturdik E, Schlosser S (1997) Evaluation of solvent and pH for extractive fermentation of butyric acid. Process Biochem 32:245–251CrossRefGoogle Scholar
  208. Varadarajan S, Miller DJ (1999) Catalytic upgrading of fermentation-derived organic acids. Biotechnol Prog 15:845–854PubMedCrossRefGoogle Scholar
  209. Vega JL, Prieto S, Elmore BB, Clausen EC, Gaddy JL (1989) The biological production of ethanol from synthesis gas. Appl Biochem Biotechnol 20/21:781–797CrossRefGoogle Scholar
  210. Vollbrecht D, El Nawawy MA (1980) Restricted oxygen supply and excretion of metabolites. Euro J Appl Microbiol Biotechnol 9:1–8CrossRefGoogle Scholar
  211. Von Freudenreich E, Jensen O (1906) Über die im Emmentaler Käse stattfindende Propionsauregärung Zentralblatt für Bacteriologie. Parasiten Kunde Infectious Krankheiten und Hygiene Abt II 17:529–546Google Scholar
  212. Wayman M, Martin ME, Graf G (1962) Propionic acid fermentation. US Patent 3,067,107. Chem Abstr 58:7337Google Scholar
  213. Weber GH, Broich WA (1986) Shelf life extension of cultured dairy foods. Cult Dairy Prod J 21(4):19–23Google Scholar
  214. Weiss N, Schillinger U, Kandler O (1983) Lactobacillus trichodes and Lactobacillus heterochiochii, subjective synonym of Lactobacillus fructivorans. Syst Appl Microbiol 4:507–511PubMedCrossRefGoogle Scholar
  215. Wiegel J (1980) Formation of ethanol by bacteria. A pledge for the use of extreme thermophilic anaerobic bacteria in industrial ethanol fermentation processes. Experientia 36:1434–1446CrossRefGoogle Scholar
  216. Wiegel J (1992) The obligately anaerobic thermophilic bacteria. In: Kristjansson JK (ed) Thermophilic bacteria. CRC Press, Boca Raton, pp 105–184Google Scholar
  217. Wiegel J, Ljungdahl LG (1986) The importance of thermophilic bacteria in biotechnology. Crit Rev Biotechnol 3:39–108CrossRefGoogle Scholar
  218. Wilkinson SR, Young DI, Morris JG, Young M (1995) Molecular genetics and the initiation of solventogenesis in Clostridium beijerinckii (formerly Clostridium acetobutylicum) NCIMB 8052. FEMS Microbiol Rev 17:275–285PubMedCrossRefGoogle Scholar
  219. Wills C, Kratofil P, Londo D, Martin T (1981) Characterization of the two alcohol dehydrogenases of Zymomonas mobilis. Arch Biochem Biophys 210:775–785PubMedCrossRefGoogle Scholar
  220. Winston SJ, Solar Energy Information Data Bank (1981) Ethanol fuels: use, production & economics, 1st edn. US Government Printing Office, GoldenGoogle Scholar
  221. Wood BE, Ingram LO (1992) Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum. Appl Environ Microbiol 58:2103–2110PubMedGoogle Scholar
  222. Worden RM, Grethlein AJ, Zeikus JG, Datta R (1989) Butyrate production from carbon monoxide by Butyribacterium methylotrophicum. App Biochem Biotechnol 20/21:687–698CrossRefGoogle Scholar
  223. Worden RM, Grethlein AJ, Jain MK, Datta R (1991) Production of butanol and ethanol from synthesis gas via fermentation. Fuel 70:615–619CrossRefGoogle Scholar
  224. Worden RM, Bredwell MD, Grethlein AJ (1997) Engineering issues in synthesis-gas fermentations. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass, vol 666. American Chemical Society, Washington, DC, pp 320–335, ACS Symposium SeriesCrossRefGoogle Scholar
  225. Woskow SA, Glatz BA (1991) Propionic acid production by a propionic acid tolerant strain of Propionibacterium acidipropionici in batch and semicontinuous fermentation. Appl Environ Microbiol 57:2821–2828PubMedGoogle Scholar
  226. Wyman CE (1994) Ethanol from lignocellulosic biomass: technology, economics, and opportunities. Bioresource Technol 50:3–16CrossRefGoogle Scholar
  227. Wyman CE (ed) (1996) Handbook on bioethanol: production and utilization. Taylor and Francis, Washington, DCGoogle Scholar
  228. Wyman CE (2001) Twenty years of trials, tribulations and research progress in bioethanol technology. Appl Biochem Biotechnol 91–93:5–21PubMedCrossRefGoogle Scholar
  229. Xue Y, Xu Y, Liu Y, Ma Y, Zhou P (2001) Thermoanaerobacter tengcongensis sp. nov., a novel anaerobic, saccharolytic, thermophilic bacterium isolated from a hot spring in Tongcong, China. Int J Syst Evol Microbiol 51:1335–1341PubMedGoogle Scholar
  230. Yan R-T, Chen J-S (1990) Coenzyme A-acylating adlehyde dehydrogenase from Clostridium beijerinckii NRRL B592. Appl Environ Microbiol 56:2591–2599PubMedGoogle Scholar
  231. Yang ST, Zhu H, Li Y, Hong G (1994) Continuous propionate production from whey permeate using a novel fibrous bed bioreactor. Biotechnol Bioeng 43:1124–1130PubMedCrossRefGoogle Scholar
  232. Yomano LP, York SW, Ingram LO (1998) Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Ind Microbiol Biotechnol 20:132–138PubMedCrossRefGoogle Scholar
  233. Yoon K-H, Pack MY (1990) Nucleotide sequence of the Zymomonas mobilis alcohol dehydrogenase II gene. Nucleic Acids Res 18:187PubMedCrossRefGoogle Scholar
  234. Young M (1993) Development and exploitation of conjugative gene transfer in clostridia. In: Woods DR (ed) The clostridia and biotechnology. Butterworth-Heinemann, London, pp 99–118Google Scholar
  235. Zakpaa HD, Ishizaki A, Shimizu K (1997) Computer-mediated addition of fresh medium in continuous culture of Zymomonas mobilis by monitoring weight changes. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass, vol 666. American Chemical Society, Washington, DC, pp 143–154, ACS Symposium SeriesCrossRefGoogle Scholar
  236. Zanin GM, Santana CC, Bon EPS, Giordano RCL, de Moraes FF, Andrietta SR, de Carvalho Neto CC, Macedo IC, Fo DL, Ramos LP, Fontana JD (2000) Brazilian bioethanol program. Appl Biochem Biotechnol 84–86:1147–1161PubMedCrossRefGoogle Scholar
  237. Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243PubMedCrossRefGoogle Scholar
  238. Zigova J, Sturdik E (2000) Advances in biotechnological production of butyric acid. J Ind Microb Biotechnol 24:153–160CrossRefGoogle Scholar
  239. Zigova J, Sturdik E, Vandak D, Schlosser S (1999) Butyric acid production by Clostridium butyricum with integrated extraction and pertraction. Process Biochem 34:835–843CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mary Jo Zidwick
    • 1
  • Jiann-Shin Chen
    • 2
  • Palmer Rogers∗
    • 2
  1. 1.Biotechnology Development CenterCargill, IncorporatedMinneapolisUSA
  2. 2.Department of BiochemistryVirginia Polytechnic Institute and State University (Virginia Tech)BlacksburgUSA

Personalised recommendations