• Eugene Rosenberg
  • Eliora Z. Ron
Reference work entry


Microorganisms synthesize a wide variety of high- and low-molecular-mass bioemulsifiers. The low-molecular-mass bioemulsifiers are generally glycolipids, such as trehalose lipids, sophorolipids, and rhamnolipids, or lipopeptides, such as surfactin, gramicidin S, and polymyxin. The high-molecular-mass bioemulsifiers are amphipathic polysaccharides, proteins, lipopolysaccharides, lipoproteins, or complex mixtures of these biopolymers. The low-molecular-mass bioemulsifiers lower surface and interfacial tensions, whereas the higher-molecular-mass bioemulsifiers are more effective at stabilizing oil-in-water emulsions. Three natural roles for bioemulsifiers have been proposed: (1) increasing the surface area of hydrophobic water-insoluble growth substrates, (2) increasing the bioavailability of hydrophobic substrates by increasing their apparent solubility or desorbing them from surfaces, and (3) regulating the attachment and detachment of microorganisms to and from surfaces. Bioemulsifiers have several important advantages over chemical surfactants, which should allow them to become prominent in industrial and environmental applications. The potential commercial applications of bioemulsifiers include bioremediation of oil-polluted soil and water; enhanced oil recovery; replacement of chlorinated solvents used in cleaning-up oil-contaminated pipes, vessels, and machinery; use in the detergent industry; formulations of herbicides and pesticides; and formation of stable oil-in-water emulsions for the food and cosmetic industries.


Critical Micelle Concentration Interfacial Tension Rhodococcus Erythropolis Natural Role High Bacterial Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abraham WR, Meyer H, Yakimov M (1998) Novel glycine containing glucolipids from the alkane using bacterium Alcanivorax borkumensis. Biochim Biophys Acta 1393(1):57–62PubMedGoogle Scholar
  2. Appaiah AKA, Karanth NGK (1991) Insecticide specific emulsifier production by hexachlorocyclohexane-utilizing Pseudomonas tralucida Ptm+ strain. Biotechnol Lett 13:371–374Google Scholar
  3. Arima K, Kahinuma A, Tamura G (1968) Surfactin, a crystalline peptide lipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494PubMedGoogle Scholar
  4. Arino S, Marchal R, Vandecasteele JP (1996) Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species. Appl Microbiol Biotechnol 45(1–2):162–168Google Scholar
  5. Arino S, Marchal R, Vandecasteele JP (1998) Involvement of a rhamnolipid-producing strain of Pseudomonas aeruginosa in the degradation of polycyclic aromatic hydrocarbons by a bacterial community. J Appl Microbiol 84:769–776PubMedGoogle Scholar
  6. Ashtaputre AA, Shah AK (1995) Emulsifying property of a viscous exopolysaccharide from Sphingomonas paucimobilis. World J Microbiol Biotechnol 11:219–222Google Scholar
  7. Banat IM (1995) Biosurfactants production and possible use in microbial enhanced oil recovery and oil pollution remediation: a review. Biosource Technol 51:1–12Google Scholar
  8. Barkay T, Navon-Venezia S, Ron E, Rosenberg E (1999) Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl Environ Microbiol 65:2697–2702PubMedGoogle Scholar
  9. Beebe JL, Umbreit WW (1971) Extracellular lipid of Thiobacillus thiooxidans. J Bacteriol 108:612–615PubMedGoogle Scholar
  10. Belsky I, Gutnick DL, Rosenberg E (1979) Emulsifier of Arthrobacter RAG-1: determination of emulsifier-bound fatty acids. FEBS Lett 101:175–178PubMedGoogle Scholar
  11. Bernheimer AW, Avigad LS (1970) Nature and properties of a cytological agent produced by Bacillus subtilis. J Gen Microbiol 61:361–369PubMedGoogle Scholar
  12. Bohringer J, Fischer D, Mosler G, Hengge-Aronis R (1995) UDP-glucose is a potential intracellular signal molecule in the control of expression of sigma S and sigma S-dependent genes in Escherichia coli. J Bacteriol 177:413–422PubMedGoogle Scholar
  13. Bonilla M, Olivaro C, Corona M, Vazquez A, Soubes M (2005) Production and characterization of a new bioemulsifier from Pseudomonas putida ML2. J Appl Microbiol 98:456–463PubMedGoogle Scholar
  14. Borchert S, Stachelhaus T, Marahiel MA (1994) Induction of surfactin production in Bacillus subtilis by gsp, a gene located upstream of the gramicidin S operon in Bacillus brevis. J Bacteriol 176:2458–2462PubMedGoogle Scholar
  15. Brint JM, Ohman DE (1995) Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J Bacteriol 177:7155–7163PubMedGoogle Scholar
  16. Bruheim P, Bredholt H, Eimhjellen K (1997) Bacterial degradation of emulsified crude oil and the effect of various surfactants. Can J Microbiol 43(1):17–22PubMedGoogle Scholar
  17. Bunster L, Fokkema NJ, Shippers B (1989) Effect of surface-active Pseudomonas spp. on leaf wettability. Appl Environ Microbiol 55:1434–1435Google Scholar
  18. Burd G, Ward OP (1996) Physicochemical properties of PM-factor, a surface-active agent produced by Pseudomonas marginalis. Can J Microbiol 42:243–252PubMedGoogle Scholar
  19. Calvo C, Martinez-Checa F, Mota A, Bejar V, Quesada E (1998) Effect of cations, pH and sulfate content on the viscosity and emulsifying activity on the Halomonas eurihalina. J Ind Microbiol Biotechnol 20:205–209Google Scholar
  20. Cameron DR, Cooper DG, Neufeld RJ (1988) The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier. Appl Environ Microbiol 54:1420–1425PubMedGoogle Scholar
  21. Campos-Garcia J, Caro AD, Najera R, Miller-Maier RM, Al-Tahhan RA, Soberon-Chavez D (1998) The Pseudomonas aeruginosa rhlG gene encodes an NADPH-dependent beta-ketoacyl reductase which is specifically involved in rhamnolipid synthesis. J Bacteriol 180:4442–4451PubMedGoogle Scholar
  22. Cirigliano MC, Carman GM (1984) Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 50:846–850Google Scholar
  23. Cooper DG, Paddock DA (1983) Torulopsis petrophilum and surface activity. Appl Environ Microbiol 46:1426–1429PubMedGoogle Scholar
  24. Cooper DG, Zajic JE (1980) Surface active compounds from microorganisms. Adv Appl Microbiol 26:229–253Google Scholar
  25. Cooper DG, MacDonald CR, Duff SJB, Kosaric N (1981) Enhanced production of surfactin of B subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 42:408–412PubMedGoogle Scholar
  26. Cooper DG, Liss SN, Longay R, Zajic JE (1989) Surface activities of Mycobacterium and Pseudomonas. J Ferment Technol 59:97–101Google Scholar
  27. Cosby WM, Vollenbroich D, Lee OH, Zuber P (1998) Altered srf expression in Bacillus subtilis resulting from changes in culture pH is dependent on the Spo0K oligopeptide permease and the ComQX system of extracellular control. J Bacteriol 180:1438–1445PubMedGoogle Scholar
  28. Cosmina P, Rodriguez F, de Ferra F, Grandi G, Perego M, Venema G, van Sinderen D (1993) Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol Microbiol 8:21–31Google Scholar
  29. Cutler AJ, Light RJ (1979) Regulation of hydroxydocosanoic and sophoroside production in Candida bogoriensis by the level of glucose and yeast extract in the growth medium. J Biol Chem 254:1944–1950PubMedGoogle Scholar
  30. Dahan O (1998) Isolation and characterization of alasan mutants in Acinetobacter radioresistens. MSc, Thesis, Tel Aviv UniversityGoogle Scholar
  31. Davila AM, Marchal R, Vandecasteele JP (1997) Sophorose lipid fermentation with differentiated substrate supply for growth and production phases. Appl Microbiol Biotechnol 47:496–501Google Scholar
  32. De Acevedo GT, McInerney MJ (1996) Emulsifying activity in thermophilic and extremely thermophilic microorganisms. J Ind Microbiol 16:17–22Google Scholar
  33. Desai J, Banat I (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–48PubMedGoogle Scholar
  34. Deziel E, Paquette G, Villemur R, Lepine F, Bisaillon JG (1996) Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl Environ Microbiol 62(6):1908–1912PubMedGoogle Scholar
  35. Espuny MJ, Egido S, Rodon I, Manresa A, Mercade ME (1996) Nutritional requirements of a biosurfactant producing strain Rhodococcus s p 51 T7. Biotechnol Lett 18:521–526Google Scholar
  36. Fabret C, Quentin Y, Guiseppi A, Busuttil J, Haiech J, Denizot F (1995) Analysis of errors in finished DNA sequences: the surfactin operon of Bacillus subtilis as an example. Microbiology 141:345–350PubMedGoogle Scholar
  37. Fattom A, Shilo M (1985) Production of emulcyan by Phormidium J-1: its function and activity. FEMS Microbiol Ecol 1:1–7Google Scholar
  38. Fiebig R, Schulze D, Chung JC, Lee ST (1997) Biodegradation of polychlorinated biphenyls (PCBs) in the presence of a bioemulsifier produced on sunflower oil. Biodegradation 8:67–75Google Scholar
  39. Fiechter A (1992) Biosurfactants: moving towards industrial application. Trends Biotechnol 10:208–217PubMedGoogle Scholar
  40. Fraenkel DG (1992) Genetics and intermediary metabolism. Annu Rev Genet 26:159–177PubMedGoogle Scholar
  41. Galli G, Rodriguez F, Cosmina P, Pratesi C, Nogarotto R, de Ferra F, Grandi G (1994) Characterization of the surfactin synthetase multi-enzyme complex. Biochim Biophys Acta 1205:19–28PubMedGoogle Scholar
  42. Goldenberg-Dvir V (1998) A new bioemulsifier produced by the oil-degrading Acinetobacter junii V-26. MSc, thesis, Tel Aviv UniversityGoogle Scholar
  43. Goldman S, Shabtai Y, Rubinovitz C, Rosenberg E, Gutnick DL (1982) Emulsan in Acinetobacter calcoaceticus RAG-1: distribution of cell-free and cell-associated cross-reacting materials. Appl Environ Microbiol 44:165–170PubMedGoogle Scholar
  44. Golyshin PN, Lang S, Moore ER, Abraham WR, Lunsdorf H, Timmis KJ (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48(2):339–348PubMedGoogle Scholar
  45. Grau A, Gomez Fernandez JC, Peypoux F, Ortiz A (1999) A study on the interactions of surfactin with phospholipid vesicles. Biochim Biophys Acta 1418:307–319PubMedGoogle Scholar
  46. Grossman AD (1995) Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annu Rev Genet 29:477–508PubMedGoogle Scholar
  47. Guerra-Santos LH, Kappeli O, Fiechter A (1986) Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl Microbiol Biotechnol 24:443–448Google Scholar
  48. Gunjar M, Khire JM, Khan MI (1995) Bioemulsifier production by Bacillus stearothermophilus VR8 isolate. Lett Appl Microbiol 21:83–86Google Scholar
  49. Gutierrez T, Mulloy B, Bavington C, Black K, Green DH (2007) Partial purification and chemical characterization of a glycoprotein (putative hydrocolloid) emulsifier produced by a marine bacterium Antarctobacter. Appl Microbiol Biotechnol 76:1017–1026PubMedGoogle Scholar
  50. Hauser G, Karnovsky ML (1954) Studies on the production of glycolipid by Pseudomonas aeruginosa. J Bacteriol 68:645–654PubMedGoogle Scholar
  51. Hisatsuka K, Nakahara T, Sano N, Yamada K (1971) Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation. Agric Biol Chem 35:686–692Google Scholar
  52. Horowitz S, Griffin WM (1991) Structural analysis of Bacillus licheniformis 86 surfactant. J Ind Microbiol 7:45–52PubMedGoogle Scholar
  53. Inoue S, Itoh S (1982) Sophorolipids from Torulopsis bombicola as microbial surfactants in alkane fermentation. Biotechnol Lett 4:308–312Google Scholar
  54. Isoda H, Shinmoto H, Kitamoto D, Matsumura M, Nakahara T (1997) Differentiation of human promyelocytic leukemia cell line HL60 by microbial extracellular glycolipids. Lipids 32:263–271PubMedGoogle Scholar
  55. Itoh S, Inoue S (1982) Sophorolipids from Torulopsis bombicola as microbial surfactants in alkane fermentations. Appl Environ Microbiol 43:1278–1283Google Scholar
  56. Itoh S, Suzuki T (1972) Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffin-utilizing ability. Agric Biol Chem 36:1233–1235Google Scholar
  57. Kaeppeli O, Finnerty WR (1979) Partition of alkane by an extracellular vesicle derived from hexadecane-grown Acinetobacter. J Bacteriol 140:707–712Google Scholar
  58. Kaeppeli O, Finnerty WR (1980) Characteristics of hexadecane partition by the growth medium of Acinetobacter sp. Biotechnol Bioeng 22:495–501Google Scholar
  59. Kaeppeli O, Walther P, Mueller M, Fiechter A (1984) Structure of cell surface of the yeast Candida tropicalis and its relation to hydrocarbon transport. Arch Microbiol 138:279–282Google Scholar
  60. Kaplan N, Rosenberg E (1982) Exopolysaccharide distribution and bioemulsifier production in Acinetobacter calcoaceticus BD4 and BD413. Appl Environ Microbiol 44:1335–1341PubMedGoogle Scholar
  61. Kaplan N, Jann B, Jann K (1985) Structural studies on the capsular polysaccharide of Acinetobacter calcoaceticus BD4. Eur J Biochem 152:453–458PubMedGoogle Scholar
  62. Kaplan N, Zosim Z, Rosenberg E (1987) Acinetobacter calcoaceticus BD4 emulsan: reconstitution of emulsifying activity with pure polysaccharide and protein. Appl Environ Microbiol 53:440–446PubMedGoogle Scholar
  63. Katz E, Demain AL (1977) The peptide antibiotics of Bacillus: chemistry, biogenesis and possible functions. Bacteriol Rev 41:449–458PubMedGoogle Scholar
  64. Kelkar DS, Kumar AR, Zinjarde SS (2007) Hydrocarbon emulsification and enhanced crude oil degradation by lauroyl glucose ester. Bioresour Technol 98:1505–1508PubMedGoogle Scholar
  65. Kim JS, Powalla M, Lang S, Wagner F, Lunsdorf H, Wray V (1990) Microbial glycolipid production under nitrogen limitation and resting cell conditions. J Biotechnol 13:257–266PubMedGoogle Scholar
  66. Klekner V, Kosaric N (1993) Biosurfactants for cosmetics. In: Kosaric N (ed) Biosurfactants: production, properties, applications, vol 48, Surfactant science series. Marcel Dekker, New York, pp 329–372Google Scholar
  67. Koch AK, Kaeppeli O, Fiechter A, Reiser J (1991) Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol 173:4212–4219PubMedGoogle Scholar
  68. Konz D, Doekel A, Marahiel MA (1999) Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin. J Bacteriol 181:133–140PubMedGoogle Scholar
  69. Krauss EM, Chan SI (1983) Complexation and phase transfer of nucleotides by gramicidin S. Biochemistry 22:4280–4285PubMedGoogle Scholar
  70. Kretschmer A, Bock H, Wagner F (1982) Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkane. Appl Environ Microbiol 44:864–870PubMedGoogle Scholar
  71. Lambalot RH, Gehring AM, Flugel RS, Zuber P, LaCelle M, Marahiel MA, Reid R, Khosla C, Walsh CT (1996) A new enzyme superfamily–the phosphopantetheinyl transferases. Chem Biol 3:923–936PubMedGoogle Scholar
  72. Lang S, Philip JC (1998) Surface active lipids in Rhodococci. Anton Leeuw Int 74:59–70Google Scholar
  73. Lang S, Wagner F (1987) Structure and properties of biosurfactants. In: Kosaric N, Cairns WL, Gray NCC (eds) Biosurfactants and biotechnology, vol 25, Surfactant science series. Marcel Dekker, New York, pp 21–47Google Scholar
  74. Lang S, Wullbrandt D (1999) Rhamnose lipids-biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32PubMedGoogle Scholar
  75. Latifi A, Winson MK, Foglino M, Bycroft BW, Stewart GS, Lazdunski A, Williams P (1995) Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 17:333–343PubMedGoogle Scholar
  76. Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A (1996) A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21:1137–1146PubMedGoogle Scholar
  77. Lazazzera BA, Kurtser IG, McQuade RS, Grossman AD (1999) An autoregulatory circuit affecting peptide signaling in Bacillus subtilis. J Bacteriol 181:5193–5200PubMedGoogle Scholar
  78. Li ZY, Lang S, Wagner F, Witte L, Wray V (1984) Formation and identification of interfacial-active glycolipids from resting microbial cells of Arthrobacter sp. and potential use in tertiary oil recovery. Appl Environ Microbiol 48:610–617PubMedGoogle Scholar
  79. Lin SC (1996) Biosurfactants: recent advances. J Chem Technol Biotechnol 66(2):109–120Google Scholar
  80. Lin SC, Minton MA, Sharma MM, Georgiou G (1994) Structural and immunological characterization of a biosurfactant produced by Bacillus licheniformis JF-2. Appl Environ Microbiol 60:31–38PubMedGoogle Scholar
  81. Lindum PW, Anthoni U, Christophersen C, Eberl L, Molin S, Givskov M (1998) N-Acyl-L-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MG1. J Bacteriol 180:6384–6388PubMedGoogle Scholar
  82. Liu L, Nakano MM, Lee OH, Zuber P (1996) Plasmid-amplified comS enhances genetic competence and suppresses sinR in Bacillus subtilis. J Bacteriol 178:5144–5152PubMedGoogle Scholar
  83. Liu X, Ren B, Chen M, Wang H, Kokare CR, Zhou X, Wang J, Dai H, Song F, Liu M, Wang J, Wang S, Zhang L (2010) Production and characterization of a group of bioemulsifiers from the marine Bacillus velezensis strain H3. Appl Microbiol Biotechnol 5:1881–1893Google Scholar
  84. Luttinger A, Hahn J, Dubnau D (1996) Polynucleotide phosphorylase is necessary for competence development in Bacillus subtilis. Mol Microbiol 19:343–356PubMedGoogle Scholar
  85. MacDonald CR, Cooper DG, Zajic JE (1981) Surface-active lipids from Nocardia erythropolis grown on hydrocarbons. Appl Environ Microbiol 41:117–123PubMedGoogle Scholar
  86. Makkar RS, Cameotra SS (1997) Biosurfactant production by a thermophilic Bacillus subtilis strain. J Ind Microbiol Biotechnol 18(1):37–42Google Scholar
  87. Maneerat S, Bamba T, Harada K, Kobayashi A, Yamada H, Kawai F (2006) A novel crude oil emulsifier excreted in the culture supernatant of a marine bacterium, Myroides sp. strain SM1. Appl Microbiol Biotechnol 70:254–259PubMedGoogle Scholar
  88. Marahiel MA (1997) Protein templates for the biosynthesis of peptide antibiotics. Chem Biol 4:4561–4567Google Scholar
  89. Marahiel MA, Nakano MM, Zuber P (1993) Regulation of peptide antibiotic production in Bacillus. Mol Microbiol 7:631–636PubMedGoogle Scholar
  90. Marin M, Pedregosa A, Laborda F (1996) Emulsifier production and microscopical study of emulsions and biofilms formed by the hydrocarbon-utilizing bacteria Acinetobacter calcoaceticus MM5. Appl Microbiol Biotechnol 44:660–667Google Scholar
  91. Matsuyama T, Sogawa M, Yano I (1991) Direct colony thin-layer chromatography and rapid characterization of Serratia marcescens mutants defective in production of wetting agents. Appl Environ Microbiol 53:1186–1188Google Scholar
  92. Menkhaus M, Ullrich C, Kluge B, Vater J, Vollenbroich D, Kamp RM (1993) Structural and functional organization of the surfactin synthetase multienzyme system. J Biol Chem 268:7678–7684PubMedGoogle Scholar
  93. Miller RM, Zhang Y (1997) Measurement of biosurfactant-enhanced solubilization and biodegradation of hydrocarbons. Method Biotechnol 2:59–66Google Scholar
  94. Nakano MM, Magnuson R, Myers A, Curry J, Grossman AD, Zuber P (1991) srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. J Bacteriol 173:1770–1778PubMedGoogle Scholar
  95. Nakano MM, Corbel N, Besson J, Zuber P (1992) Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis. Mol Gen Genet 232:313–321PubMedGoogle Scholar
  96. Nakayama S, Takahashi S, Hirai M, Shoda M (1997) Isolation of new variants of surfactin by a recombinant Bacillus subtilis. Appl Microbiol Biotechnol 48:80–82Google Scholar
  97. Navon-Venezia S, Zosim Z, Gottlieb A, Legmann R, Carmeli S, Ron EZ, Rosenberg E (1995) Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl Environ Microbiol 61:3240–3244PubMedGoogle Scholar
  98. Navon-Venezia S, Banin E, Ron EZ, Rosenberg E (1998) The bioemulsifier alasan: role of protein in maintaining structure and activity. Appl Microbiol Biotechnol 49:382–384Google Scholar
  99. Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–166PubMedGoogle Scholar
  100. Neu TR, Poralla K (1990) Emulsifying agent from bacteria isolated during screening for cells with hydrophobic surfaces. Appl Microbiol Biotechnol 32:521–525Google Scholar
  101. Neu TR, Dengler T, Jann B, Poralla K (1992) Structural studies of an emulsion-stabilizing exopolysaccharide produced by an adhesive, hydrophobic Rhodococcus strain. J Gen Microbiol 138:2531–2537PubMedGoogle Scholar
  102. Neufeld RJ, Zajic JE (1984) The surface activity of Acinetobacter calcoaceticus sp. 2CA2. Biotechnol Bioeng 26:1108–1114PubMedGoogle Scholar
  103. Ochsner UA, Reiser J (1995) Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 92:6424–6428PubMedGoogle Scholar
  104. Ochsner UA, Koch AK, Fiechter A, Reiser J (1994) Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 176:2044–2054PubMedGoogle Scholar
  105. Parra JL, Guinea J, Manresa MR, Mercade ME, Comelles F, Bosch MP (1989) Chemical characterization and physico-chemical behaviour of biosurfactants. J Am Oil Chem Soc 66:141–145Google Scholar
  106. Patel MN, Gopinathan KP (1986) Lysozyme-sensitive bioemulsifier for immiscible organophosphorus pesticides. Appl Environ Microbiol 52:1224–1226PubMedGoogle Scholar
  107. Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179:5756–5767PubMedGoogle Scholar
  108. Persson A, Oesterberg E, Dostalek M (1988) Biosurfactant production by Pseudomonas fluorescens 378: growth and product characteristics. Appl Microbiol Biotechnol 29:1–4Google Scholar
  109. Pesci EC, Pearson JP, Seed PC, Iglewski BH (1997) Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179:3127–3132PubMedGoogle Scholar
  110. Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563PubMedGoogle Scholar
  111. Pruthi V, Cameotra SS (1997) Production of a biosurfactant exhibiting excellent emulsification and surface active properties by Serratia marcescens. World J Microbiol Biotechnol 13(1):133–135Google Scholar
  112. Rapp P, Bock H, Wray V, Wagner F (1979) Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes. J Gen Microbiol 115:491–503Google Scholar
  113. Rau U, Manzke C, Wagner F (1996) Influence of substrate supply on the production of sophorose lipids by Candida bombicola ATCC 22214. Biotechnol Lett 18:149–154Google Scholar
  114. Rehm HJ, Reiff I (1981) Mechanisms and occurrence of microbial oxidation of long-alkanes. Adv Biochem Eng 19:173–181Google Scholar
  115. Rendell NB, Taylor GW, Somerville M, Todd H, Wilson R, Cole J (1990) Characterization of Pseudomonas rhamnolipids. Biochim Biophys Acta 1045:189–193PubMedGoogle Scholar
  116. Richter M, Willey M, Suessmuth R, Jung G, Fiedler HP (1998) Streptofactin, a novel biosurfactant with aerial mycelium inducing activity from Streptomyces tendae Tue 901/8c. FEMS Microbiol Lett 163(2):165–171Google Scholar
  117. Ristau E, Wagner F (1983) Formation of novel anionic trehalose-tetraesters from Rhodococcus erythropolis under growth limiting conditions. Biotechnol Lett 5:95–100Google Scholar
  118. Robinson K, Ghosh M, Shi Z (1996) Mineralization enhancement of non-aqueous phase and soil-bound PCB using biosurfactant. Water Sci Technol 34:303–309Google Scholar
  119. Ron E, Rosenberg E (2010a) Role of biosurfactants. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, HeidelbergGoogle Scholar
  120. Ron E, Rosenberg E (2010b) Protein emulsifiers. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, HeidelbergGoogle Scholar
  121. Rosenberg E (1993) Exploiting microbial growth on hydrocarbon: new markets. Trends Biotechnol 11:419–424Google Scholar
  122. Rosenberg E, Kaplan N (1987) Surface-active properties of Acinetobacter expolysaccharides. In: Inouye M (ed) Bacteria outer membranes as model systems. Wiley, New York, pp 311–342Google Scholar
  123. Rosenberg E, Ron EZ (1996) Bioremediation of petroleum contamination. In: Crawford RL, Crawford DL (eds) Bioremediation: principles and applications. Cambridge University Press, Cambridge, MA, pp 100–124Google Scholar
  124. Rosenberg E, Ron EZ (1997) Bioemulsans: microbial polymeric emulsifiers. Curr Opin Biotechnol 8:313–316PubMedGoogle Scholar
  125. Rosenberg E, Ron EZ (1998) Surface active polymers from the genus Acinetobacter. In: Kaplan DL (ed) Biopolymers from renewable resources. Springer, Berlin, pp 281–291Google Scholar
  126. Rosenberg E, Ron EZ (1999) High and low molecular mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162PubMedGoogle Scholar
  127. Rosenberg E, Perry A, Gibson DT, Gutnick D (1979a) Emulsifier of Arthrobacter RAG-1: specificity of hydrocarbon substrate. Appl Environ Microbiol 37:409–413PubMedGoogle Scholar
  128. Rosenberg E, Zuckerberg A, Rubinovitz C, Gutnick DL (1979b) Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties. Appl Environ Microbiol 37:402–408PubMedGoogle Scholar
  129. Rosenberg E, Gottlieb A, Rosenberg M (1983) Inhibition of bacterial adherence to hydrocarbons and epithelial cells by emulsan. Infect Immun 39:1024–1028PubMedGoogle Scholar
  130. Rosenberg E, Rubinovitz C, Gottlieb A, Rosenhak S, Ron EZ (1988a) Production of biodispersan by Acinetobacter calcoaceticus A2, Appl Environ Microbiol 54:317–322PubMedGoogle Scholar
  131. Rosenberg E, Rubinovitz C, Legmann R, Ron EZ (1988b) Purification and chemical properties of Acinetobacter calcoaceticus A2 biodispersan. Appl Environ Microbiol 54:323–326PubMedGoogle Scholar
  132. Rosenberg E, Schwartz Z, Tenenbaum A, Rubinovitz C, Legmann R, Ron EZ (1989) A microbial polymer that changes the surface properties of limestone: effect of biodispersan in grinding limestone and making paper. J Dispers Sci Technol 10:241–250Google Scholar
  133. Rosenberg E, Barkay T, Navon-Venezia S, Ron EZ (1999) Role of Acinetobacter bioemulsans in petroleum degradation. In: Fass R et al (eds) Novel approaches for bioremediation of organic pollution. Kluwer/Plenum, New York, pp 171–180Google Scholar
  134. Rubinovitz C, Gutnick DL, Rosenberg E (1982) Emulsan production by Acinetobacter calcoaceticus in the presence of chloramphenicol. J Bacteriol 152:126–132PubMedGoogle Scholar
  135. Sapir S (1998) Genes involved in growth of Acinetobacter junii strain V26 on hexadecane. MSc, Thesis, Tel Aviv UniversityGoogle Scholar
  136. Sar N, Rosenberg E (1983) Emulsifier production by Acinetobacter calcoaceticus strains. Curr Microbiol 9:309–314Google Scholar
  137. Sekelsky AM, Shreve GS (1999) Kinetic model of biosurfactant-enhanced hexadecane biodegradation by Pseudomonas aeruginosa. Biotechnol Bioeng 63:401–409PubMedGoogle Scholar
  138. Shepherd R, Rockey J, Sutherland IW, Roller S (1995) Novel bioemulsifiers from microorganisms for use in foods. J Biotechnol 40:207–217PubMedGoogle Scholar
  139. Sim L, Ward OP, Li ZY (1997) Production and characterization of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. J Ind Microbiol Biol 19:232–238Google Scholar
  140. Solomon JM, Magnuson R, Srivastava A, Grossman AD (1995) Convergent sensing pathways mediate response to two extracellular competence factors in Bacillus subtilis. Genes Dev 9:547–558PubMedGoogle Scholar
  141. Stark M (1996) Analysis of the exopolysaccharide gene cluster from Acinetobacter calcoaceticus BD4. PhD thesis, Tel Aviv UniversityGoogle Scholar
  142. Sullivan ER (1998) Molecular genetics of biosurfactant production. Curr Opin Biotechnol 9:263–269PubMedGoogle Scholar
  143. Suzuki T, Hayashi K, Fujikawa K, Tsukamoto K (1965) The chemical structure of polymyxin E the identities of polymyxin E1 with colistin A and polymyxin E2 with colistin. J Biol Chem 57:226–227Google Scholar
  144. Suzuki T, Tanaka K, Matsubara J, Kimoshita S (1969) Trehalose lipid and branched-hydroxy fatty acids formed by bacteria grown on n-alkanes. Agric Biol Chem 33:1619–1625Google Scholar
  145. Taylor WH, Juni E (1961) Pathways for biosynthesis of a bacterial capsular polysaccharide. I. Characterization of the organism and polysaccharide. J Bacteriol 81:688–693PubMedGoogle Scholar
  146. Toren A, Orr E, Paitan Y, Ron EZ, Rosenberg E (2002a) The active component of the bioemulsifier alasan from Acinetobacter radioresistens KA53 is an OmpA-like protein. J Bacteriol 184:165–170PubMedGoogle Scholar
  147. Toren A, Ron EZ, Bekerman R, Rosenberg E (2002b) Solubilization of polyaromatic hydrocarbons by recombinant bioemulsifier AlnA. Appl Microbiol Biotechnol 59:580–584PubMedGoogle Scholar
  148. Trebbau-de AG, McInerney MJ (1996) Emulsifying activity in thermophilic and extremely thermophilic microorganisms. J Ind Microbiol 16:1–7Google Scholar
  149. Van Delden C, Pesci EC, Pearson JP, Iglewski BH (1998) Starvation selection restores elastase and rhamnolipid production in a Pseudomonas aeruginosa quorum-sensing mutant. Infect Immun 66:4499–4502PubMedGoogle Scholar
  150. van Loosdrecht MCM, Lyklema J, Norde W, Zehnder AJB (1990) Influence of interfaces on microbial activity. Microbiol Rev 54:75–87PubMedGoogle Scholar
  151. Volkering F, Breure A, Rulkens W (1997) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8:401–417PubMedGoogle Scholar
  152. Wagner F, Behrendt V, Bock H, Kretschmer A, Lang S, Syldatk C (1983) Production and chemical characterization of surfactants from Rhodococcus erythropolis and Pseudomonas sp. MUB grown on hydrocarbons. In: Zajic JE et al (eds) Microbial enhanced oil recovery. Pennwell, Tulsa, pp 55–60Google Scholar
  153. Wang SD, Wand DIC (1990) Mechanisms for biopolymer accumulation in immobilized Acinetobacter calcoaceticus system. Biotechnol Bioeng 36:402–410PubMedGoogle Scholar
  154. Wei YH, Chu IM (1998) Enhancement of surfactin production in iron-enriched media by Bacillus subtilis ATCC 21332. Enzyme Microb Technol 22:724–728Google Scholar
  155. Yakimov MM, Golyshin PN (1997) ComA-dependent transcriptional activation of lichenysin A synthetase promoter in Bacillus subtilis cells. Biotechnol Prog 13:757–761PubMedGoogle Scholar
  156. Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 61:1706–1713PubMedGoogle Scholar
  157. Yakimov MM, Kroger A, Slepak TN, Giuliano L, Timmis KN, Golyshin PN (1998) A putative lichenysin A synthetase operon in Bacillus licheniformis: initial characterization. Biochim Biophys Acta 1399:141–153PubMedGoogle Scholar
  158. Zhang Y, Miller RM (1994) Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol 60:2101–2106PubMedGoogle Scholar
  159. Zhang Y, Miller RM (1995) Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes. Appl Environ Microbiol 61(6):2247–2251PubMedGoogle Scholar
  160. Zhou QH, Kosaric N (1995) Utilization of canola oil and lactose to produce biosurfactant with Candida bombicola. J Am Oil Chem Soc 72:67–71Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Molecular Microbiology and BiotechnologyTel Aviv UniversityTel AvivIsrael

Personalised recommendations