Skip to main content

Bacterial Enzymes

  • Reference work entry
  • 4793 Accesses

Abstract

In the living world, each chemical reaction is catalyzed by its own enzyme. Enzymes exhibit a high specificity, as they are able to discriminate between slightly different substrate molecules. Furthermore, they have the ability to operate at moderate temperature, pressure, and pH, which makes them attractive catalysts for industrial and household conversion processes. The first reports on the industrial use of enzyme products go back to the beginning of the last century. It was the German scientist Röhm who introduced the use of bovine pancreas extracts for the removal of stains in dirty clothing (Röhm 1915, Fig. 6.1). Around the same time, the Laboratoire Amylo in France experimented with the use of extract from Bacillus for conversion of starch into sugars (Fig. 6.2). As a result, the company Rapidase (Seclin, France), which is now part of the life science division of DSM, was formed. With the development of microbial fermentations in the second half of the last century, the number of industrial processes performed by enzymes and the amount of enzyme produced have increased sharply. At present, a renewed worldwide research effort has been directed to identifying more sustainable and environmentally friendly biocatalytic processes. The availability of highly specific and cheap enzymes resulting from genetic and protein engineering has been very instrumental in reviving interest in the industrial application of enzymes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aehle W, Gerritse G, Lenting HB (1995) Lipases with improved surfactant resistance. Patent WO 95/30744

    Google Scholar 

  • Aiba S, Kitai K, Imanaka T (1983) Cloning and expression of thermostable alpha-amylase gene from Bacillus stearothermophilus in Bacillus stearothermophilus and Bacillus subtilis. Appl Environ Microbiol 46:1059–1065

    PubMed  CAS  Google Scholar 

  • Albers E, Muller BW (1995) Cyclodextrin derivatives in pharmaceutics. Crit Rev Ther Drug Carrier Syst 12:311–337

    PubMed  CAS  Google Scholar 

  • Alkema WB, Hensgens CM, Kroezinga EH, De Vries E, Floris R, Van der Laan JM, Dijkstra BW, Janssen DB (2000) Characterization of the beta-lactam binding site of penicillin acylase of Escherichia coli by structural and site-directed mutagenesis studies. Protein Eng 13:857–863

    PubMed  CAS  Google Scholar 

  • Aramori I, Fukagawa M, Tsumura M, Iwami M, Isogai T, Ono H, Ishitani Y, Kojo H, Kohsaka M, Ueda Y, Imanaka H (1991a) Cloning and nucleotide sequencing of new glutaryl 7-aca and cephalosporin c acylase genes from pseudomonas strains. J Ferment Bioeng 72(4):232–243

    CAS  Google Scholar 

  • Aramori I, Fukagawa M, Tsumura M, Iwami M, Ono H, Kojo H, Kohsaka M, Ueda Y, Imanaka H (1991b) Cloning and nucleotide sequencing of a novel 7 beta-(4-carboxybutanamido)cephalosporanic acid acylase gene of Bacillus laterosporus and its expression in Escherichia coli and Bacillus subtilis. J Bacteriol 173:7848–7855

    PubMed  CAS  Google Scholar 

  • Balasingham K, Warburton D, Dunnill P, Lilly MD (1972) The isolation and kinetics of penicillin amidase from Escherichia coli. Biochim Biophys Acta 276:250–256

    PubMed  CAS  Google Scholar 

  • Barbero JL, Buesa JM, Gonzalez De Buitrago G, Mendez E, Perez-Aranda A, Garcia JL (1986) Complete nucleotide sequence of penicillin acylase gene from Kluyvera citrophila. Gene 49:69–80

    PubMed  CAS  Google Scholar 

  • Bertola MA, Quax WJ, Robertson BW, Marx AF, van der Laken CJ (1992) Microbial esterases and process for the preparation of 2-arylpropionic acids. Patent EP 233656-B

    Google Scholar 

  • Betzel C, Wilson KS, Branner S (1988) Crystallization and preliminary X-ray diffraction studies of an alkaline protease from Bacillus lentus. J Mol Biol 204:803–804

    PubMed  Google Scholar 

  • Boesten WHJ, Moody HM (1995) Process for the enzymatic preparation of a beta-lactam derivative. Patent WO 9503420

    Google Scholar 

  • Bolhuis A, Tjalsma H, Smith HE, De Jong A, Meima R, Venema G, Bron S, van Dijl JM (1999) Evaluation of bottlenecks in the late stages of protein secretion in Bacillus subtilis. Appl Environ Microbiol 65:2934–2941

    PubMed  CAS  Google Scholar 

  • Brown SH, Costantino HR, Kelly RM (1990) Characterization of amylolytic enzyme activities associated with the hyperthermophilic archaebacterium Pyrococcus furiosus. Appl Environ Microbiol 56:1985–1991

    PubMed  CAS  Google Scholar 

  • Bruggink A, Roos EC, Devroom E (1998) Penicillin acylase in the industrial production of beta-lactam antibiotics. Org Process Res Dev 2:128–133

    CAS  Google Scholar 

  • Bruns W, Hoppe J, Tsai H, Bruning HJ, Maywald F, Collins J, Mayer H (1985) Structure of the penicillin acylase gene from Escherichia coli: a periplasmic enzyme that undergoes multiple proteolytic processing. J Mol Appl Genet 3(1):36–44

    PubMed  CAS  Google Scholar 

  • Buleon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112

    PubMed  CAS  Google Scholar 

  • Callens M, Kersters-Hilderson H, Vangrysperre W, De Bruyne CK (1988) d-xylose isomerase from streptomyces violaceoruber: structural and catalytic roles of bivalent metal ions. Enzyme Microb Technol 10:695–700

    CAS  Google Scholar 

  • Chakrabarty AM (1981) Microorganisms having multiple compatible degradative energy-generating plasmids and preparation thereof. US Patent 4,259,444

    Google Scholar 

  • Chandra AK, Medda S, Bhadra AK (1980) Production of extracellular thermostable alpha-amylase by Bacillus licheniformis. J Ferment Technol 58:1–10

    CAS  Google Scholar 

  • Chen W-P (1980) Glucose isomerase [review]. Proc Biochem 15:36–41

    CAS  Google Scholar 

  • Christiansen T, Christensen B, Nielsen J (2002) Metabolic network analysis of Bacillus clausii on minimal and Semirich medium using (13)C-labeled glucose. Metab Eng 4:159–169

    PubMed  CAS  Google Scholar 

  • Coffen DL (1997) Enzyme-catalyzed reactions. In: Ahuja SE (ed) Chiral separations: applications and technology. American Chemical Society, Washington, DC, pp 59–91

    Google Scholar 

  • Collins NC, Grant WD, Jones BE (1998a) Gram-negative alkaliphilic microorganisms. US Patent 5,733,767

    Google Scholar 

  • Collins NC, Grant WD, Jones BE (1998b) Gram-positive alkaliphilic microorganisms. US Patent 5,707,851

    Google Scholar 

  • Cox M, Gerritse G, Dankmeyer L, Quax WJ (2001) Characterization of the promoter and upstream activating sequence from the Pseudomonas alcaligenes lipase gene. J Biotechnol 86:9–17

    PubMed  CAS  Google Scholar 

  • Crameri A, Dawes G, Rodriguez E Jr, Silver S, Stemmer WP (1997) Molecular evolution of an arsenate detoxification pathway by DNA shuffling. Nat Biotechnol 15:436–438

    PubMed  CAS  Google Scholar 

  • Crawford L, Stepan AM, Mcada PC, Rambosek JA, Conder MJ, Vinci VA, Reeves CD (1995) Production of cephalosporin intermediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity. Biotechnology (NY) 13:58–62

    CAS  Google Scholar 

  • Drenth J, Hol WGJ, Jansonius JN, Koekoek R (1972) Subtilisin novo: The three-dimensional structure and its comparison with subtilisin Bpn. Eur J Biochem 26:177–181

    PubMed  CAS  Google Scholar 

  • Droge MJ, Bos R, Quax WJ (2001) Paralogous gene analysis reveals a highly enantioselective 1,2-o-isopropylideneglycerol caprylate esterase of Bacillus subtilis. Eur J Biochem 268:3332–3338

    PubMed  CAS  Google Scholar 

  • Drummond RJ, Bloch W, Matthews BW, Toy PL, Nicholson HH (1989) Procaryotic xylose isomerase muteins and method to increase protein stability. Patent WO 89/01520

    Google Scholar 

  • Edman M, Jarhede T, Sjostrom M, Wieslander A (1999) Different sequence patterns in signal peptides from mycoplasmas, other Gram-positive bacteria, and Escherichia coli: a multivariate data analysis. Prot Struct Funct Genet 35:195–205

    CAS  Google Scholar 

  • Eggen R, Geerling A, Watts J, Devos WM (1990) Characterization of pyrolysin, a hyperthermoactive serine protease from the archaebacterium Pyrococcus furiosus. FEMS Microbiol Lett 71:17–20

    CAS  Google Scholar 

  • El-Khattabi M, Ockhuijsen C, Bitter W, Jaeger KE, Tommassen J (1999) Specificity of the lipase-specific foldases of gram-negative bacteria and the role of the membrane anchor. Mol Gen Genet 261:770–776

    PubMed  CAS  Google Scholar 

  • Emtage JS, Angal S, Doel MT, Harris TJR, Lowe B, Jenkins PA, Lilley G (1983) Synthesis of calf prochymosin (prorennin) in Escherichia coli (synthetic oligonucleotide/gene expression/industrial enzyme). Proc Natl Acad Sci USA 80:3671–3675

    PubMed  CAS  Google Scholar 

  • Estell DA, Graycar TP, Wells JA (1985) Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. J Biol Chem 260:6518–6521

    PubMed  CAS  Google Scholar 

  • Farber GK, Petsko GA, Ringe D (1987) The 3.0 A crystal structure of xylose isomerase from Streptomyces olivochromogenes. Protein Eng 1:459–466

    PubMed  CAS  Google Scholar 

  • Filloux A, Michel G, Bally M (1998) GSP-dependent protein secretion in Gram-negative bacteria: the Xcp system of Pseudomonas aeruginosa. FEMS Microbiol Rev 22:177–198

    PubMed  CAS  Google Scholar 

  • Gat O, Lapidot A, Alchanati I, Regueros C, Shoham Y (1994) Cloning and dna sequence of the gene coding for Bacillus stearothermophilus T-6 xylanase. Appl Environ Microbiol 60:1889–1896

    PubMed  CAS  Google Scholar 

  • Genencor Cleaning Enzymes Product List (2001) Genencor cleaning enzymes product list. Genencor International, Rochester

    Google Scholar 

  • Gerritse G, Hommes RW, Quax WJ (1998a) Development of a lipase fermentation process that uses a recombinant Pseudomonas alcaligenes strain. Appl Environ Microbiol 64:2644–2651

    PubMed  CAS  Google Scholar 

  • Gerritse G, Ure R, Bizoullier F, Quax WJ (1998b) The phenotype enhancement method identifies the Xcp outer membrane secretion machinery from Pseudomonas alcaligenes as a bottleneck for lipase production. J Biotechnol 64:23–38

    PubMed  CAS  Google Scholar 

  • Gray GL, Mainzer SE, Rey MW, Lamsa MH, Kindle KL, Carmona C, Requadt C (1986) Structural genes encoding the thermophilic alpha-amylases of Bacillus stearothermophilus and Bacillus licheniformis. J Bacteriol 166:635–643

    PubMed  CAS  Google Scholar 

  • Gray GL, Power SD, Poulouse AJ (1995) Lipase from Pseudomonas Mendocina having cutinase activity. US Patent 5,389,536

    Google Scholar 

  • Griffiths AD, Tawfik DS (2003) Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization. EMBO J 22:24–35

    PubMed  CAS  Google Scholar 

  • Gusakov AV, Sinitsyn AP, Berlin AG, Markov AV, Ankudimova NV (2000) Surface hydrophobic amino acid residues in cellulase molecules as a structural factor responsible for their high denim-washing performance. Enzyme Microb Technol 27:664–671

    PubMed  CAS  Google Scholar 

  • Hakamada Y, Hatada Y, Koike K, Yoshimatsu T, Kawai S, Kobayashi T, Ito S (2000) Deduced amino acid sequence and possible catalytic residues of a thermostable, alkaline cellulase from an alkaliphilic bacillus strain. Biosci Biotechnol Biochem 64:2281–2289

    PubMed  CAS  Google Scholar 

  • Hedstrom G, Backlund M, Slotte JP (1993) Enantioselective synthesis of ibuprofen esters in Aot isooctane microemulsions by Candida cylindracea lipase. Biotechnol Bioeng 42:618–624

    PubMed  CAS  Google Scholar 

  • Henrick K, Blow DM, Carrell HL, Glusker JP (1987) Comparison of backbone structures of glucose isomerase from streptomyces and arthrobacter. Protein Eng 1:467–469

    PubMed  CAS  Google Scholar 

  • Hesselink PGM, van Vliet S, De Vries H, Witholt B (1989) Optimization of steroid side chain cleavage by Mycobacterium sp. in the presence of cyclodextrins. Enzyme Microb Technol 11:398–404

    CAS  Google Scholar 

  • Hofemeister J, Kurtz A, Borriss R, Knowles J (1986) The beta-glucanase gene from Bacillus amyloliquefaciens shows extensive homology with that of Bacillus subtilis. Gene 49:177–187

    PubMed  CAS  Google Scholar 

  • Hofmann BE, Bender H, Schulz GE (1989) Three-dimensional structure of cyclodextrin glycosyltransferase from Bacillus circulans at 3.4 A resolution. J Mol Biol 209:793–800

    PubMed  CAS  Google Scholar 

  • Irwin D, Shin DH, Zhang S, Barr BK, Sakon J, Karplus PA, Wilson DB (1998) Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J Bacteriol 180:1709–1714

    PubMed  CAS  Google Scholar 

  • Ishii Y, Saito Y, Fujimura T, Isogai T, Kojo H, Yamashita M, Niwa M, Kohsaka M (1994) A novel 7-beta-(4-carboxybutanamido)-cephalosporanic acid acylase isolated from Pseudomonas strain C427 and its high-level production in Escherichia coli. J Ferment Bioeng 77:591–597

    CAS  Google Scholar 

  • Ishiye M, Niwa M (1992) Nucleotide sequence and expression in Escherichia coli of the cephalosporin acylase gene of a Pseudomonas strain. Biochim Biophys Acta 1132:233–239

    PubMed  CAS  Google Scholar 

  • Jacobs M, Eliasson M, Uhlen M, Flock JI (1985) Cloning, sequencing and expression of subtilisin Carlsberg from Bacillus licheniformis. Nucleic Acids Res 13:8913–8927

    PubMed  CAS  Google Scholar 

  • Jager M, Pluckthun A (1997) The rate-limiting steps for the folding of an antibody Scfv fragment. FEBS Lett 418:106–110

    PubMed  CAS  Google Scholar 

  • Jeong ST, Kim HK, Kim SJ, Chi SW, Pan JG, Oh TK, Ryu SE (2002) Novel zinc-binding center and a temperature switch in the Bacillus stearothermophilus L1 lipase. J Biol Chem 277:17041–17047

    PubMed  CAS  Google Scholar 

  • Joly JC, Swartz JR (1997) In vitro and in vivo redox states of the Escherichia coli periplasmic oxidoreductases Dsba and Dsbc. Biochemistry 36:10067–10072

    PubMed  CAS  Google Scholar 

  • Joly JC, Leung WS, Swartz JR (1998) Overexpression of Escherichia coli oxidoreductases increases recombinant insulin-like growth factor-I accumulation. Proc Natl Acad Sci USA 95:2773–2777

    PubMed  CAS  Google Scholar 

  • Jones B, Quax W (1998) Alzheimer tau test and detergent cellulase made by genetic engineering [no. 9 in a series of articles to promote a better understanding of the use of genetic engineering]. J Biotechnol 66:229–233

    Google Scholar 

  • Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200

    PubMed  CAS  Google Scholar 

  • Jongbloed AW, Mroz Z, Kemme PA (1992) The effect of supplementary Aspergillus niger phytase in diets for pigs on concentration and apparent digestibility of dry matter, total phosphorus and phytic acid in different sections of the alimentary tract. J Anim Sci 70:1168

    Google Scholar 

  • Jorgensen ST, Jorgensen PL (1993) A process for expressing genes in Bacillus Licheniformis. Patent WO 93/10248

    Google Scholar 

  • Jorgensen OB, Karlsen LG, Nielsen NB, Pedersen S, Rugh S (1988) A new immobilized glucose isomerase with high productivity produced by a strain of Streptomyces murinus. Starch/Starke 40:307–313

    Google Scholar 

  • Jung ED, Lao G, Irwin D, Barr BK, Benjamin A, Wilson DB (1993) DNA sequences and expression in Streptomyces lividans of an exoglucanase gene and an endoglucanase gene from Thermomonospora fusca. Appl Environ Microbiol 59:3032–3043

    PubMed  CAS  Google Scholar 

  • Kelly AP, Diderichsen B, Jorgensen S, McConnell DJ (1994) Molecular genetic analysis of the pullulanase b gene of Bacillus acidopullulyticus. FEMS Microbiol Lett 115:97–105

    PubMed  CAS  Google Scholar 

  • Kerovuo J, Tynkkynen S (2000) Expression of Bacillus subtilis phytase in Lactobacillus plantarum 755. Lett Appl Microbiol 30:325–329

    PubMed  CAS  Google Scholar 

  • Kerovuo J, Rouvinen J, Hatzack F (2000) Analysis of myo-inositol hexakisphosphate hydrolysis by bacillus phytase: indication of a novel reaction mechanism. Biochem J 352:623–628

    PubMed  CAS  Google Scholar 

  • Kitahata S, Taniguchi M, Beltran SD, Sugimoto T, Okada S (1983) Purification and some properties of cyclodextrinase from Bacillus coagulans. Agric Biol Chem 47:1441–1447

    CAS  Google Scholar 

  • Knowles J, Lehtovaara P, Penttila M, Teeri T, Harkki A, Salovuori I (1987) The cellulase genes of trichoderma. Antonie Van Leeuwenhoek 53:335–341

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Hakamada Y, Adachi S, Hitomi J, Yoshimatsu T, Koike K, Kawai S, Ito S (1995) Purification and properties of an alkaline protease from alkalophilic Bacillus sp. KSM-K16. Appl Microbiol Biotechnol 43:473–481

    PubMed  CAS  Google Scholar 

  • Koch R, Zablowski P, Spreinat A, Antranikian G (1990) Extremely thermostable amylolytic enzyme from the archaebacterium Pyrococcus furiosus. FEMS Microbiol Lett 71:21–26

    CAS  Google Scholar 

  • Koeller KM, Wong CH (2001) Enzymes for chemical synthesis. Nature 409:232–240

    PubMed  CAS  Google Scholar 

  • Kontinen VP, Sarvas M (1993) The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high-level secretion. Mol Microbiol 8:727–737

    PubMed  CAS  Google Scholar 

  • Kosaric N, Wieczorek A, Cosentino GP, Magee RJ, Prenosil JE (1983) Ethanol fermentation. Biotechnology 3:258–385

    Google Scholar 

  • Kreft J, Berger H, Haertlein M, Mueller B, Goebel G, Weidinger W (1983) Cloning and expression in E. coli and Bacillus subtilis of the hemolysin determinant from Bacillus cereus. J Bacteriol 155:681–689

    PubMed  CAS  Google Scholar 

  • Lapidot A, Mechaly A, Shoham Y (1996) Overexpression and single-step purification of a thermostable xylanase from Bacillus stearothermophilus T-6. J Biotechnol 51:259–264

    PubMed  CAS  Google Scholar 

  • Legendre D, Laraki N, Graslund T, Bjornvad ME, Bouchet M, Nygren PA, Borchert TV, Fastrez J (2000) Display of active subtilisin 309 on phage: analysis of parameters influencing the selection of subtilisin variants with changed substrate specificity from libraries using phosphonylating inhibitors. J Mol Biol 296:87–102

    PubMed  CAS  Google Scholar 

  • Li Y, Jiang W, Yang Y, Zhao G, Wang E (1998) Overproduction and purification of glutaryl 7-amino cephalosporanic acid acylase Protein. Protein Expr Purif 12:233–238

    PubMed  CAS  Google Scholar 

  • Lin W, Lineback DR (1990) Changes in carbohydrate fractions in enzyme-supplemented bread and the potential relationship to staling. Starch/Staerke 42:385–394

    CAS  Google Scholar 

  • Luiten RGM, Quax WJ, Schuurhuizen PW, Mrabet N (1990) Novel glucose isomerase enzymes and their use. Patent EP 0351029-A

    Google Scholar 

  • Lundgren KR, Berkvist L, Hogman S, Joves H, Eriksson G, Bartfai T, van der Laan J, Rosenberg E, Shoham Y (1994) Tcf mill trial on softwood pulp with korsnas thermostable and alkaline stable xylanase T6. FEMS Microbiol Rev 13:365–368

    CAS  Google Scholar 

  • Lyons TP (1982) Proteinase enzymes relevant to the baking industry. Biochem Soc Trans 10:287–290

    PubMed  CAS  Google Scholar 

  • Mansfeld J, Vriend G, Dijkstra BW, Veltman OR, van Den BB, Venema G, Ulbrich-Hofmann R, Eijsink VG (1997) Extreme stabilization of a thermolysin-like protease by an engineered disulfide bond. J Biol Chem 272:11152–11156

    PubMed  CAS  Google Scholar 

  • Matsuda A, Matsuyama K, Yamamoto K, Ichikawa S, Komatsu K (1987) Cloning and characterization of the genes for two distinct cephalosporin acylases from a Pseudomonas strain. J Bacteriol 169:5815–5820

    PubMed  CAS  Google Scholar 

  • Matsumura I, Wallingford JB, Surana NK, Vize PD, Ellington AD (1999) Directed evolution of the surface chemistry of the reporter enzyme beta-glucuronidase. Nat Biotechnol 17:696–701

    PubMed  CAS  Google Scholar 

  • McPhalen CA, James MNG (1988) Structural comparison of two serine proteinase-protein inhibitor complexes: Eglin-C-Subtilisin carlsberg and Ci-2-subtilisin novo. Biochemistry 27:6582–6598

    PubMed  CAS  Google Scholar 

  • Mondou F, Shareck F, Morosoli R, Kluepfel D (1986) Cloning of the xylanase gene of Streptomyces lividans. Gene 49:323–329

    PubMed  CAS  Google Scholar 

  • Nakajima R, Imanaka T, Aiba S (1986) Comparison of amino acid sequences of eleven different alpha-amylases. Appl Microbiol Biotechnol 23:355–360

    CAS  Google Scholar 

  • Nardini M, Lang DA, Liebeton K, Jaeger KE, Dijkstra BW (2000) Crystal structure of Pseudomonas aeruginosa lipase in the open conformation: the prototype for Family I.1 of bacterial lipases. J Biol Chem 275:31219–31225

    PubMed  CAS  Google Scholar 

  • Nishimori K, Kawaguchi Y, Hidaka M, Uozumi T, Beppu T (1981) Communication: cloning in Escherichia coli of the structural gene of prorennin, the precursor of calf milk-clotting enzyme rennin. J Biochem 90:901–904

    PubMed  CAS  Google Scholar 

  • Noble ME, Cleasby A, Johnson LN, Egmond MR, Frenken LG (1994) Analysis of the structure of Pseudomonas glumae lipase. Protein Eng 7:559–562

    PubMed  CAS  Google Scholar 

  • Norris L, Norris F, Christiansen L, Fiil N (1983) Efficient site-directed mutagenesis by simultaneous use of two primers. Nucleic Acids Res 11:5103–5112

    PubMed  CAS  Google Scholar 

  • Otten LG, Sio CF, Vrielink J, Cool RH, Quax WJ (2002) Altering the substrate specificity of cephalosporin acylase by directed evolution of the beta-subunit. J Biol Chem 277:42121–42127

    PubMed  CAS  Google Scholar 

  • Outtrup H, Aunstrup K (1975) Production and application of a thermostable alpha-amylase from Bacillus licheniformis. In: Proceedings of the First Intersectional Congress of the Association of Microbiological Societies IAMS (IUMS) 5:205–210

    Google Scholar 

  • Outtrup H, Dambmann C, Bisgaard-Frantzen H, Olsen AA, Schuelein M (1998) Alkalophilic Bacillus Sp. Ac13 and protease, xylanase, cellulase obtainable therefrom. US Patent 3,723,250

    Google Scholar 

  • Park SC, Choi YW, Oh TK (1999) Comparative enzymatic hydrolysis of phytate in various animal feedstuff with two different phytases. J Vet Med Sci 61:1257–1259

    PubMed  CAS  Google Scholar 

  • Peterson MG (1988) DNA sequencing using Taq polymerase. Nucleic Acids Res 16:10915

    PubMed  CAS  Google Scholar 

  • Picard V, Ersdalbadju E, Lu AQ, Bock SC (1994) A rapid and efficient one-tube PCR-based mutagenesis technique using PFU DNA polymerase. Nucleic Acids Res 22:2587–2591

    PubMed  CAS  Google Scholar 

  • Quax WJ, Broekhuizen CP (1994) Development of a new bacillus carboxyl esterase for use in the resolution of chiral drugs. Appl Microbiol Biotechnol 41:425–431

    PubMed  CAS  Google Scholar 

  • Quax WJ, Laroche Y, Vollebregt AWH, Stanssens P, Lauwereys M (1991a) Mutant microbial alpha-amylases with increased thermal, acid and/or alkaline stability. Patent WO 91/00353

    Google Scholar 

  • Quax WJ, Mrabet NT, Luiten RG, Schuurhuizen PW, Stanssens P, Lasters I (1991b) Enhancing the thermostability of glucose isomerase by protein engineering. Nat Biotechnol 9:738–742

    CAS  Google Scholar 

  • Quax WJ, Bonekamp AF, van Tilborg M (1993) Correct secretion of heterologous proteins from Bacillus licheniformis. In: Baltz HS (ed) Industrial microorganisms: basic and applied molecular genetics. ASM Press, Washington, DC, pp 143–150

    Google Scholar 

  • Reetz MT, Jaeger KE (1998) Overexpression, immobilization and biotechnological application of Pseudomonas lipases. Chem Phys Lipids 93:3–14

    PubMed  CAS  Google Scholar 

  • Reilly PJ (1979) Starch hydrolysis with soluble and immobilized glucoamylase. Appl Biochem Bioeng 2:185–207

    CAS  Google Scholar 

  • Richardson TH, Tan X, Frey G, Callen W, Cabell M, Lam D, Macomber J, Short JM, Robertson DE, Miller C (2002) A novel, high performance enzyme for starch liquefaction: discovery and optimization of a low pH, thermostable alpha-amylase. J Biol Chem 277:26501–26507

    PubMed  CAS  Google Scholar 

  • Robertson DE, Murphy D, Reid J, Antony MM, Link S, Swanson RV, Warren PV, Kosmotka A (1999) Esterases. US Patent 5,942,430

    Google Scholar 

  • Roels JA, van Tilburg R (1979) Temperature dependence of the stability and the activity of immobilized glucose isomerase. ACS Symp Ser 106:147–172

    CAS  Google Scholar 

  • Röhm O (1915) Verfahren zum Reinigen von Wäschestucken aller Art. Patent DE 283923

    Google Scholar 

  • Saari GC, Kumar AA, Kawasaki GH, Insley MY, O'Hara PJ (1987) Sequence of the Ampullariella sp. strain 3876 gene coding for xylose isomerase. J Bacteriol 169(2):612–618

    PubMed  CAS  Google Scholar 

  • Saeki K, Okuda M, Hatada Y, Kobayashi T, Ito S, Takami H, Horikoshi K (2000) Novel oxidatively stable subtilisin-like serine proteases from alkaliphilic bacillus spp.: enzymatic properties, sequences, and evolutionary relationships. Biochem Biophys Res Commun 279:313–319

    PubMed  CAS  Google Scholar 

  • Sanders JPM, van den Berg JA, Andreoli PM, Vos YJ, van Ee JH, Mulleners LJSM (1985) Molecular cloning and expression in industrial microorganism species. Patent EP 0134048

    Google Scholar 

  • Saul DJ, Williams LC, Reeves RA, Gibbs MD, Bergquist PL (1995) Sequence and expression of a xylanase gene from the hyperthermophile Thermotoga sp. strain Fjss3-B.1 and characterization of the recombinant enzyme and its activity on kraft pulp. Appl Environ Microbiol 61:4110–4113

    PubMed  CAS  Google Scholar 

  • Saunders CW, Guyer MS (1986) The production of human serum albumin in Bacillus: new gene fusions, plasmids and Bacillus strains useful in production of human serum albumin economically by cultivation. Patent EP 0229712a2 13

    Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    PubMed  CAS  Google Scholar 

  • Schrag JD, Li Y, Cygler M, Lang D, Burgdorf T, Hecht HJ, Schmid R, Schomburg D, Rydel TJ, Oliver JD, Strickland LC, Dunaway CM, Larson SB, Day J, McPherson A (1997) The open conformation of a pseudomonas lipase. Structure 5:187–202

    PubMed  CAS  Google Scholar 

  • Schroen CG, Vandewiel S, Kroon PJ, Devroom E, Janssen AE, Tramper J (2000) Equilibrium position, kinetics, and reactor concepts for the adipyl-7-Adca-hydrolysis process [in process citation]. Biotechnol Bioeng 70:654–661

    PubMed  CAS  Google Scholar 

  • Schumacher G, Sizmann D, Haug H, Buckel P, Boeck A (1986) Penicillin acylase from E. coli: unique gene-protein relation. Nucleic Acids Res 14:5713–5727

    PubMed  CAS  Google Scholar 

  • Shendye A, Rao M (1993) Cloning and extracellular expression in Escherichia coli of xylanases from an alkaliphilic thermophilic bacillus sp. Ncim-59. FEMS Microbiol Lett 108:297–302

    PubMed  CAS  Google Scholar 

  • Shibuya Y, Matsumoto K, Fujii T (1981) Isolation and properties of 7β-(4-carboxybutanamido) cephalosporanic acid acylase-producing bacteria. Agric Biol Chem 45:1561–1567

    CAS  Google Scholar 

  • Simons PCM, Versteegh HAJ, Jongbloed AV, Kemme PA, Skump P, Bos KD, Wolters MGE, Beudeker RF, Verschoor G (1990) Improvement of phosphorus availability by microbial phytase in broilers and pigs. Br J Nutr 64:525–540

    PubMed  CAS  Google Scholar 

  • Sio CF, Riemens AM, van der Laan JM, Verhaert RM, Quax WJ (2002) Directed evolution of a glutaryl acylase into an adipyl acylase. Eur J Biochem 269:4495–4504

    PubMed  CAS  Google Scholar 

  • Spezio M, Wilson DB, Karplus PA (1993) Crystal structure of the catalytic domain of a thermophilic endocellulase. Biochemistry 32:9906–9916

    PubMed  CAS  Google Scholar 

  • Stemmer WP (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391

    PubMed  CAS  Google Scholar 

  • Stephenson K, Harwood CR (1998) Influence of a cell-wall-associated protease on production of alpha-amylase by Bacillus subtilis Appl. Environ Microbiol 64:2875–2881

    CAS  Google Scholar 

  • Stephenson K, Carter NM, Harwood CR, Petitglatron MF, Chambert RG (1998) The influence of protein folding on late stages of the secretion of alpha-amylases from Bacillus subtilis. FEBS Lett 430:385–389

    PubMed  CAS  Google Scholar 

  • Tamuri M, Kanno M, Ishii Y (1997) Heat and acid-stable alpha-amylase enzymes and processes for producing the same. US Patent 4283722

    Google Scholar 

  • Tawfik DS, Griffiths AD (1998) Man-made cell-like compartments for molecular evolution. Nat Biotechnol 16:652–656

    PubMed  CAS  Google Scholar 

  • Tjalsma H, Noback MA, Bron S, Venema G, Yamane K, van Dijl JM (1997) Bacillus subtilis contains four closely related Type I signal peptidases with overlapping substrate specificities: constitutive and temporally controlled expression of different Sip genes. J Biol Chem 272:25983–25992

    PubMed  CAS  Google Scholar 

  • Van den Burg B, Vriend G, Veltman OR, Venema G, Eijsink VG (1998) Engineering an enzyme to resist boiling. Proc Natl Acad Sci USA 95:2056–2060

    PubMed  Google Scholar 

  • van der Laan JC, Gerritse G, Mulleners LJ, van der Hoek RA, Quax WJ (1991) Cloning, characterization, and multiple chromosomal integration of a Bacillus alkaline protease gene. Appl Environ Microbiol 57(4):901–909

    PubMed  Google Scholar 

  • Van der Laan JM, Teplyakov AV, Kelders H, Kalk KH, Misset O, Mulleners LSJM, Dijkstra BW (1992) Crystal structure of the high-alkaline serine protease-Pb92 from Bacillus alcalophilus. Protein Eng 5:405–411

    PubMed  Google Scholar 

  • Van Dijl JM, Dejong A, Vehmaanpera J, Venema G, Bron S (1992) Signal peptidase-I of Bacillus subtilis: patterns of conserved amino acids in prokaryotic and eukaryotic Type-I signal peptidases. EMBO J 11:2819–2822

    PubMed  Google Scholar 

  • Van Eekelen CAG, van der Laan JC, Mulleners LJS (1988) Molecular cloning and expression of genes encoding proteolytic enzymes. Patent EP 0283075

    Google Scholar 

  • Van Eekelen CAG, Mulleners LJS, van der Laan JC, Misset O, Cuperus RA, Alensink JH (1989) Novel proteolytic enzymes and their use in detergents. Patent EP 0328229

    Google Scholar 

  • van Leen RW, Bakhuis JG, van Beckhoven RF, Burger H, Dorssers LC, Hommes RW, Lemson PJ, Noordam B, Persoon NL, Wagemaker G (1991) Production of human interleukin-3 using industrial microorganisms. Biotechnology 9:47–52

    PubMed  Google Scholar 

  • Van Pouderoyen G, Eggert T, Jaeger KE, Dijkstra BW (2001) The crystal structure of Bacillus subtilis lipase: a minimal alpha/beta hydrolase fold enzyme. J Mol Biol 309:215–226

    PubMed  Google Scholar 

  • Van Solingen P, Meijer D, van der Kleij WA, Barnett C, Bolle R, Power SD, Jones BE (2001) Cloning and expression of an endocellulase gene from a novel streptomycete isolated from an East African soda lake. Extremophiles 5:333–341

    PubMed  Google Scholar 

  • Van Straten NCR, Duynstee HI, Devroom E, Van der Marel GA, van Boom JH (1997) Enzymatic cleavage of N-phenylacetyl-protected ethanolamine phosphates. Liebigs Annalen 1997(6):1215–1220

    Google Scholar 

  • Verhaert RM, Riemens AM, van der Laan JM, van Duin J, Quax WJ (1997) Molecular cloning and analysis of the gene encoding the thermostable penicillin g acylase from Alcaligenes faecalis. Appl Environ Microbiol 63:3412–3418

    PubMed  CAS  Google Scholar 

  • Verhaert RM, Beekwilder J, Olsthoorn R, van Duin J, Quax WJ (2002) Phage display selects for amylases with improved low pH starch-binding. J Biotechnol 96:103–118

    PubMed  CAS  Google Scholar 

  • Wallerstein L (1939) Enzyme preparation from microorganisms. Ind Eng Chem 31:1218–1224

    CAS  Google Scholar 

  • Welker NE, Campbell LL (1967a) Comparison of the alpha-amylase of Bacillus subtilis and Bacillus amyloliquefaciens. J Bacteriol 94:1131–1135

    PubMed  CAS  Google Scholar 

  • Welker NE, Campbell LL (1967b) Unrelatedness of Bacillus amyloliquefaciens and Bacillus subtilis. J Bacteriol 94:1124–1130

    PubMed  CAS  Google Scholar 

  • Wind RD, Uitdehaag JC, Buitelaar RM, Dijkstra BW, Dijkhuizen L (1998) Engineering of cyclodextrin product specificity and pH optima of the thermostable cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes Em1. J Biol Chem 273:5771–5779

    PubMed  CAS  Google Scholar 

  • Wong HC, Ting T, Lin H-C, Reichert F, Myambo K, Watt KWK, Toy PL, Drummond RJ (1991) Genetic organization and regulation of the xylose degradation genes in Streptomyces rubiginosus. J Bacteriol 173:6849–6858

    PubMed  CAS  Google Scholar 

  • Xie Y, van De SE, De Weerd T, Wang NH (2001) Purification of adipoyl-7-amino-3-deacetoxycephalosporanic acid from fermentation broth using stepwise elution with a synergistically adsorbed modulator. J Chromatogr A908:273–291

    Google Scholar 

  • Yamagata H, Udaka S (1994) Starch-processing enzymes produced by recombinant bacteria. Bioprocess Technol 19:325–340

    PubMed  CAS  Google Scholar 

  • Ye RQ, Kim JH, Kim BG, Szarka S, Sihota E, Wong SL (1999) High-level secretory production of intact, biologically active staphylokinase from Bacillus subtilis. Biotechnol Bioeng 62:87–96

    PubMed  CAS  Google Scholar 

  • Yuuki T, Nomura T, Tezuka H, Tsuboi A, Tsukagoshi H, Yamagata N, Udaka S (1985) Complete nucleotide sequence of gene coding for heat-and pH-stable alpha-amylase of Bacillus licheniformis: comparison of the amino acid sequence of 3 bacterial liquefying alpha-amylases deduced from the DNA. J Biochem 98:1147–1156

    PubMed  CAS  Google Scholar 

  • Zhao HM, Giver L, Shao ZX, Affholter JA, Arnold FH (1998) Molecular evolution by STaggered Extension Process (STEP) in vitro recombination. Nat Biotechnol 16:258–261

    PubMed  CAS  Google Scholar 

  • Zhu GP, Luo D, Cai YF, Zhu XY, Teng MK, Wang YZ (2000) Mutations of Q20l and G247d improved the specific-activity and optimum pH of glucose isomerase. Sheng Wu Gong Cheng Xue Bao 16:469–473

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This chapter is a compilation of numerous collaborations that have allowed the author to develop insights and ideas in the bacterial enzyme field. Special thanks to all the colleagues and students who have contributed material and illustrations presented in this chapter. The sponsoring of EU under contracts BIO2-CT950119, BIO4-9-98-0249, QLK3-CT-1999-00413, QLTR-2001-00519, and of NWO/STW under contract GBI.4707 is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim J. Quax .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Quax, W.J. (2013). Bacterial Enzymes. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31331-8_26

Download citation

Publish with us

Policies and ethics