Skip to main content

Organic Acid and Solvent Production: Acetic, Lactic, Gluconic, Succinic, and Polyhydroxyalkanoic Acids

  • Reference work entry

Abstract

The objective of this chapter is to present the ways bacteria are effectively harnessed as biocatalysts to perform the synthesis of bulk organic acids and solvents. Prior to the development of the petroleum-based chemical industry, microbial fermentations of agricultural biomass were a major source of a number of useful bulk organic chemicals. Commercial chemical production often emerged from a much earlier food-processing technology where grains, corns, milks, and fruits were fermented to wines, beers, cheeses, and vinegars. Beginning at the end of the nineteenth century and continuing to the present, specific bacterial strains were selected from nature to produce commercially needed bulk chemicals such as lactic acid, acetic acid, acetone and butanol, and more recently gluconic acid and polyhydroxyalkanoates. Lactic acid currently is produced at very large volumes for a multitude of food and industrial uses. Using the tools of metabolic engineering, bacterial strains are being altered for production of propanediols, butanediol, and succinic acid at higher yields and productivity than are possible using natural strains.

∗Deceased

In Memoriam

Palmer Rogers, the lead author of this chapter and the senior author of chapters two and three, envisioned the scope of this work and led the effort to examine critically the past, the present, and the future of industrial production of organic acids and solvents by bacterial fermentation. In 2002, Palmer passed away suddenly, before the completion of the original version of these chapters. Palmer was the one who motivated and shepherded us to join the effort and to ensure the completion of this work. He had a lifelong dedication to education of students and helped them attain the satisfaction that achieving in-depth understanding of science through hard work can bring. Palmer was kind, creative, energetic, and uncompromising in his scientific integrity and will be remembered with fondness by many people whose lives he touched.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adamse AD (1980) New isolation of Clostridium aceticum, (Wieringa). Ant v Leeuwenhoek 46:523–531

    CAS  Google Scholar 

  • Agreda VH, Zoeller JR (1993) Acetic acid and its derivatives. Dekker, New York

    Google Scholar 

  • Ahn WK, Park SJ, Lee SY (2000) Production of poly(3-hydroxybutyrate) by fed-batch culture of recombinant Escherichia coli with a highly concentrated whey solution. Appl Environ Microbiol 66:3624–3627

    PubMed  CAS  Google Scholar 

  • Ahn WS, Park SJ, Lee SY (2001) Production of poly(3-hydroxybutyrate) from whey by cell recycle fed-batch culture of recombinant Escherichia coli. Biotechnol Lett 23:235–240

    CAS  Google Scholar 

  • Albertsson A-C, Marchessault RH (1994) Governmental policy, regulations and standards. In: Doi Y, Fukuda K (eds) Biodegradable plastics and polymers. Elsevier Science, Amsterdam, pp 313–318

    Google Scholar 

  • Allgeier RJ, Hildebrandt FM (1960) Developments in vinegar manufacture. Adv Appl Microbiol 8:163–182

    Google Scholar 

  • Alpers J (1999) Engineering metabolism for commercial gains. Science 283:1625–1626

    Google Scholar 

  • Althouse JW, Tavlarides LL (1992) Analysis of organic extractant systems for acetic acid removal for calcium magnesium acetate production. Ind Eng Chem Res 31:1971–1981

    CAS  Google Scholar 

  • Aminabhavi TM, Balundgi RH (1990) A review of biodegradable plastics. Polym Plast Technol Eng 29:235–262

    CAS  Google Scholar 

  • Anastassiadis S, Aivasidis A, Wandrey C (1999) Process for the production of gluconic acid with a strain of Aureobasidium pullulans (deBray) Arnaud. US Patent 5692286

    Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    PubMed  CAS  Google Scholar 

  • Andreesen JR, Gottschalk G, Schlegel HG (1970) Clostridium formicoaceticum nov. spec. isolation description, and distinction from C. aceticum and C. thermoaceticum. Arch Mikrobiol 72:154–174

    PubMed  CAS  Google Scholar 

  • Andrianova YE, Bakuridze TL, Yargunov VG, Zhurov IV, Vinter VG (1998) Effects of succinate on the growth rates of potato, Rauwolfia, and ginseng in vitro. Prikl Biokhim Mikrobiol 34:435–438

    CAS  Google Scholar 

  • Anonymous (1993) Chem Market Report March 1 7

    Google Scholar 

  • Anonymous (1999) All-microbial route yields chiral building blocks. Chem Eng News 77(8):57

    Google Scholar 

  • Anonymous (2000) Chemical prices. Chem Market Report 257(23):26–33

    Google Scholar 

  • Arihara K, Luchansky JB (1995) Dairy lactobacilli. In: Hui YH, Khachatouriani GG (eds) Food biotechnology: microorganisms. VCH, New York, pp 609–643

    Google Scholar 

  • Asai T (1968) Acetic acid bacteria: classification and biochemical activities. University Press of Tokyo/University Park Press, Tokyo/Baltimore

    Google Scholar 

  • Attwood MA, van Dijken JP, Pronk JT (1991) Glucose metabolism and gluconic acid production by Acetobacter diazotrophicus. J Ferm Bioeng 72:101–105

    CAS  Google Scholar 

  • Auvray F, Codderville M, Ritzenthaler P, Dupont L (1997) Plasmid integration in a wide range of bacteria mediated by integrase of Lactobacillus delbrueckii bacteriophage mv4. J Bacteriol 179:1837–1845

    PubMed  CAS  Google Scholar 

  • Babel W, Iske U, Jechorek M, Miethe D (1987) Method for production of products by fermentation of methanol. German Patent GDR 251,571. Chem Abstr 109:36639

    Google Scholar 

  • Babel W, Mueller R, Miethe D, Iske U (1988) Continuous microbial synthesis of products of incomplete oxidation, such as gluconic acid. German Patent DD 253,836. Chem Abstr 109:108918

    Google Scholar 

  • Babel W, Miethe D, Iske U, Sattler K, Richter HP, Schmidt J, Babel W, Lofhagen N, Miethe D, Mueller R, Iske U, Jechorek M, Dueresch R (1991) Microbial manufacture of gluconic acid. German Patent DD 293, 135. Chem Abstr 115:278185

    Google Scholar 

  • Bahner B (1994) Chemical marketing reporter. March 21st 14

    Google Scholar 

  • Balch WE, Schoberth S, Tanner RS, Wolfe RS (1977) Acetobacterium, a new genus of hydrogen-oxidizing carbon dioxide-reducing, anaerobic bacteria. Int J Syst Bacteriol 27:355–361

    CAS  Google Scholar 

  • Barnard GN, Sanders JKM (1989) The poly-β-hydroxybutyrate granule in vivo: a new insight based on NMR spectroscopy of whole cells. J Biol Chem 264:3286–3291

    PubMed  CAS  Google Scholar 

  • Basu R, Bershears JS, Clausen EC (1999) Calcium magnesium acetate at lower production costs: production of CMA deicer from biomass. US DOT Publication No. FHWA-RD-98-055

    Google Scholar 

  • Benninga H (1990) A history of lactic acid making. Kluwer Academic, Dordrecht/Boston

    Google Scholar 

  • Beppu T (1993) Genetic organization of acetobacter for acetic acid fermentation. Ant v Leeuwenhoek 64:121–135

    Google Scholar 

  • Berglund KA, Elankovan P, Glassner DA (1991) Carboxylic acid purification and crystallization process. US Patent 5,034,105

    Google Scholar 

  • Berglund KA, Yedur S, Dunuwila DD (1999) Succinic acid production and purification. US Patent 5,958,744

    Google Scholar 

  • Bernhauer K (1924) Zum Problem der Säurebildung durch A. niger Biochem. Z. 153:517–521

    Google Scholar 

  • Bernhauer K (1928) Über die Characterisierung der Stämme von A. niger auf Grund ihres biochemischen Verhaltens Biochem.Z 197:278–287

    Google Scholar 

  • Bhowmik T, Steele JL (1994) Cloning, characterization, and insertional inactivation of Lactobacillus helveticus D(−)-lactate dehydrogenase. Appl Microbiol Biotechnol 41:432–439

    PubMed  CAS  Google Scholar 

  • Bigelis R, Tsai SP (1995) Microorganisms for organic acid production. In: Hui YH, Khachatourians GG (eds) Food biotechnology: microorganisms. VCH, New York, pp 239–280

    Google Scholar 

  • Blom RH, Pfeiffer VF, Moyer AJ, Traufler DH, Conway HF, Crocker CK, Farison RE, Hannibal DV (1952) Sodium gluconate production-fermentation with A. niger. Ind Eng Chem 44:435–440

    CAS  Google Scholar 

  • Bock A, Sawers G (1996) “Fermentation” in Escherichia coli and Salmonella. In: Neidhardt FC (ed) Cellular and molecular biology. ASM Press, Washington, pp 262–282

    Google Scholar 

  • Boutroux L (1880) Sur une fermentation nouvelle du glucose. CR Acad Sci 91:236–238

    Google Scholar 

  • Boynton ZL, Koon JJ, Brennan EM, Clouart JD, Horowitz DM, Gerngross TU, Huisman GW (1999) Reduction of cell lysate viscosity during processing of poly(3-hydroxyalkanoates) by chromosomal integration of the Staphylococcal nuclease gene in Pseudomonas putida. Appl Environ Microbiol 65:1524–1529

    PubMed  CAS  Google Scholar 

  • Braun M, Mayer F, Gottschalk G (1981) Clostridium aceticum (Wieringa) a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch Microbiol 128:288–293

    PubMed  CAS  Google Scholar 

  • Brown AT, Breeding LC (1980) Carbon dioxide metabolism by Actinomyces viscosus: pathways for succinate and aspartate production. Infect Immun 28:82–91

    PubMed  CAS  Google Scholar 

  • Bucholz K, Gödelmann B (1978) Macrokinetics and operational stability of immobilized glucose oxidase and catalase. Biotechnol Bioeng 20:1201–1220

    Google Scholar 

  • Buchta K (1983) Lactic acid. In: Rehm HJ, Reed G (eds) Biotechnology. Verlag Chemie, Weinheim, pp 409–417

    Google Scholar 

  • Busche RM (1985) Acetic acid manufacture – fermentation alternatives. In: Cherenisinoff PN, Ouellette RP (eds) Biotechnology applications and research technomic. Technomic Lancaster PA, pp 88–102

    Google Scholar 

  • Busche RM (1991) Extractive fermentation of acetic acid: economic tradeoff between yield of clostridium and concentration of acetobacter. Appl Biochem Biotechnol 28(29):605–621

    Google Scholar 

  • Byrom D (1992) Production of poly-β-hydroxybutyrate: poly-β-hydroxyvalerate copolymers. FEMS Microbiol Rev 103:247–250

    CAS  Google Scholar 

  • Byrom D (1994) Polyhydroxyalkanoates. In: Mobley DP (ed) Plastics from microbes. Hanser, Munich, pp 5–33

    Google Scholar 

  • Carr NG (1966) The occurrence of poly-β-hydroxybutyrate in the blue-green alga, Chloroglea fritschii. Biochim Biophys Acta 120:308–310

    PubMed  CAS  Google Scholar 

  • Cauvin B, Luchansky JB (1992) Advances in electro-transformation of Gram-positive bacteria. Bio-rad Laboratories Bulletin 1350A

    Google Scholar 

  • Chang HN, Kim YC, Lee SY, Kim BS (1994) Current status of biodegradable plastics in Korea: research, commercial production and government policy. In: Doi Y, Fukuda K (eds) Biodegradable plastics and polymers. Elsevier Science, Amsterdam, pp 286–297

    Google Scholar 

  • Chang D-E, Jung H-C, Rhee J-S, Pan J-G (1999) Homofermentative production of D-or L-lactate in metabolically engineered Escherichia coli RR1. Appl Environ Microbiol 65:1384–1389

    PubMed  CAS  Google Scholar 

  • Cheng P, Mueller RE, Jaeger S, Bajpai R, Iannotti EL (1991) Lactic acid production from enzyme-thinned corn starch using Lactobacillus amylovorus. J Ind Microbiol 7:27–34

    CAS  Google Scholar 

  • Cheryan M (1999) Acetic acid production. In: Lederberg J (ed) Encyclopedia of microbiology. Academic, San Diego

    Google Scholar 

  • Cheryan M, Paretkh S, Shah M, Witjitra K (1997) Production of acetic acid by Clostridium thermoaceticum. Adv Appl Microbiol 43:1–33

    PubMed  CAS  Google Scholar 

  • Chiellini E (1994) Status of government policy, regulation and standards on the issue of biodegradable plastic materials in Italy. In: Doi Y, Fukuda K (eds) Biodegradable plastics and polymers. Elsevier Science, Amsterdam, pp 273–285

    Google Scholar 

  • Choi J, Lee SY (1997) Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation. Bioproc Eng 17:335–342

    CAS  Google Scholar 

  • Choi J, Lee SY (1999a) Efficient and economical recovery of poly(3-hydroxybutyrate) from recombinant Escherichia coli by simple digestion with chemicals. Biotechnol Bioeng 62:546–553

    PubMed  CAS  Google Scholar 

  • Choi J, Lee SY (1999b) High-level production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by fed-batch culture of recombinant Escherichia coli. Appl Environ Microbiol 65:4363–4368

    PubMed  CAS  Google Scholar 

  • Choi J, Lee SY (2000) Economic consideration in the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by bacterial fermentation. Appl Microbiol Biotechnol 53:646–649

    PubMed  CAS  Google Scholar 

  • Chun VH, Rogers PL (1988) The simultaneous production of sorbitol from fructose and gluconic acid from glucose using an oxidoreductase of Zymomonas mobilis. Appl Microbiol Biotechnol 29:19–24

    CAS  Google Scholar 

  • Clark DP (1989) The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 63:223–234

    CAS  Google Scholar 

  • Clark DP, Cunningham PR, Reams SG, Mat-Jan F, Mohammedkhani R, Williams CR (1988) Mutants of Escherichia coli defective in acid fermentation. Appl Biochem Biotechnol 17:163–173

    PubMed  CAS  Google Scholar 

  • Cocconcelli PS, Gasson MJ, Morelli L, Bottazzi V (1991) Single-stranded DNA plasmid vector construction and cloning of Bacillus stearothermophilus α-amylase in Lactobacillus. Res Microbial 142:643–652

    CAS  Google Scholar 

  • Crow VL (1987) Citrate cycle intermediates in the metabolism of aspartate and lactate by Propionibacterium freudenreichii subsp. shermanii. Appl Environ Microbiol 53:2600–2602

    PubMed  CAS  Google Scholar 

  • Currie JN, Finlay A (1933) Fermentation such as the production of D-gluconic acid. US Patent 1908225. Chem Abstr 27:3774

    Google Scholar 

  • Currie JN, Carter RH (Charles Pfizer, and Co.). (1930) Gluconic acid. US Patent 1896811. Chem Abstr 27:2757

    Google Scholar 

  • Datta R (1989) Recovery and purification of lactate salts from whole fermentation broth by electrodialysis. US Patent to Michigan Biotech Institute 4,885,247

    Google Scholar 

  • Datta R (1992) Process for the production of succinic acid by anaerobic fermentation. US Patent 5,143,833

    Google Scholar 

  • Datta R, Glassner DA, Jain MK, Vick Roy JR (1992) Fermentation and purification process for succinic acid. US Patent 5,168,055

    Google Scholar 

  • Datta R, Tsai S-P, Bonsignore P, Moon S-H, Frank JR (1995) Technological and economic potential of poly (lactic acid) and lactic acid derivatives. FEMS Microbiol Rev 16:221–231

    CAS  Google Scholar 

  • Davidson BE, Llanos RM, Cancilla MR, Redman NC, Hillier AJ (1995) Current research on the genetics of lactic acid production in lactic acid bacteria. Int Dairy J 5:763–784

    CAS  Google Scholar 

  • Dawes EA, Senior PJ (1973) The role and regulation of energy reserve polymers in microorganisms. Adv Microb Physiol 10:135–266

    PubMed  CAS  Google Scholar 

  • De Koning G, Kellerhals M, van Meurs C, Witholt B (1997) In: Eggink G, Steinbuchel A, Poirer Y, Witholt B (eds) Proceedings of the 1996 international symposium on bacterial polyhydroxyalkanoates. A process for the production of bacterial medium-chain-length poly(R)-3-hydroxyalkanoates: reviewing the status quo. NRC Research Press, Davos, Switzerland, pp 137–142

    Google Scholar 

  • Demirci A, Pometto AL 3rd (1992) Enhanced production of D(−) lactic acid by mutants of Lactobacillus delbruecki ATCC 9649. J Ind Microbiol 11:23–28

    CAS  Google Scholar 

  • Demirci A, Pometto AL 3rd (1995) Repeated-batch fermentation in biofilm reactors with plastic composite supports for lactic acid production. Appl Microbiol Biotechnol 43:585–589

    CAS  Google Scholar 

  • Dennis D, Kaplan NO (1960) D-and L-lactic acid dehydrogenases in Lactobacillus plantarum. J Biol Chem 235:810–818

    PubMed  CAS  Google Scholar 

  • DeVos WM, Simons GFM (1994) Gene cloning and expression systems in Lactococci. In: Gasson MJ, DeVos WM (eds) Genetics and biotechnology of lactic acid bacteria. Blackie Academic/Professional Publishers, London/New York, pp 52–105

    Google Scholar 

  • DeWilt HGJ (1972) Oxidation of glucose to gluconic acid. Ind Eng Chem Prod Res Dev 11:370–378

    CAS  Google Scholar 

  • Djordjevic GM, O'Sullivan DJ, Walker SA, Conkling MA, Kaenhammer TR (1997) Triggered-suicide system designed for bacteriophage defense of Lactococcus lactis. J Bacteriol 179:6741–6748

    PubMed  CAS  Google Scholar 

  • Doi Y (1990) Microbial polyesters. VCH, New York

    Google Scholar 

  • Doi Y, Fukuda K (eds) (1994) Biodegradable plastics and polymers. Elsevier Science, Amsterdam

    Google Scholar 

  • Doi Y, Segawa A, Kawaguchi Y, Kunioka M (1990) Cyclic nature of poly(3-hydroxyalkanoate) metabolism in Alcaligenes eutrophus. FEMS Microbiol Lett 67:165

    CAS  Google Scholar 

  • Donnelly MI, Millard CS, Clark DP, Chen MJ, Rathke JW (1998a) A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, and ethanol. Appl Biochem Biotechnol 70–72:187–198

    Google Scholar 

  • Donnelly M, Millard CS, Stols L (1998b) Mutant E. coli strain with increased succinic acid production. US Patent 5,770,435

    Google Scholar 

  • Drake HL (1994) Acetogenesis, acetogenic bacteria, and the acetyl-CoA “Wood/Ljungdahl” pathway: past and current perspectives. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 3–60

    Google Scholar 

  • Dubos RJ (1988) Pasteur and modern science. Science Tech, Madison

    Google Scholar 

  • Ebner H (1985) Process for the production of vinegar with more than 12g/100ml acetic acid. US Patent 4,503,078

    Google Scholar 

  • Ebner H, Follmann H (1983) Acetic acid. In: Rehm HJ, Reed G (eds) Biotechnology, vol 3. VCH, Weinheim, pp 387–407

    Google Scholar 

  • Ebner H, Sellmer S, Follmann H (1996) Acetic acid. In: Roehr M (ed) Biotechnology, 2E, vol 6, Products of Primary Metabolism. VCH Weinheim, Germany, vol 6, pp 381–401

    Google Scholar 

  • Eden G, Fuchs G (1982) Total synthesis of acetyl CoA involved in autotrophic CO2 fixation in Acetobacterium woodii. Arch Microbiol 133:66–74

    CAS  Google Scholar 

  • Eden G, Fuchs G (1983) Autotrophic CO2 fixation in Acetobacterium woodii. II: demonstration of enzymes involved. Arch Microbiol 135:68–73

    CAS  Google Scholar 

  • Entani E, Ohmori S, Masai H, Suzuki K-I (1985) Acetobacter polyoxogenes, sp. nov., a new species of an acetic acid bacterium useful for producing vinegar with high acidity. J Gen Appl Microbiol 31:475–490

    CAS  Google Scholar 

  • Evans JD, Martin SA (1997) Factors affecting lactate and malate utilization by Selenomonas ruminantium. Appl Environ Microbiol 63:4853–4858

    PubMed  CAS  Google Scholar 

  • Fiedler S, Steinbüchel A, Rehm B (2000) PhaGe-mediated synthesis of poly(3-hydroxyalkanoates) consisting of medium-chain-length constituents from nonrelated carbon sources in recombinant Pseudomonas fragi. Appl Environ Microbiol 66:2117–2124

    PubMed  CAS  Google Scholar 

  • Flores-Encarnacion M, Contreras-Zentella M (1999) The respiratory system and diazotrophic activity of Acetobacter diazotrophicus PAL5. J Bacteriol 181:6987–6995

    PubMed  CAS  Google Scholar 

  • Fontaine F, Peterson WH, McCoy E, Johnson MJ, Ritter G (1942) A new type of glucose fermentation by Clostridium thermoaceticum, n. sp. J Bacteriol 43:701–715

    PubMed  CAS  Google Scholar 

  • Forde A, Daly C, Fitzgerald GF (1999) Identification of four phage resistance plasmids from Lactococcus lactis subsp. cremoris HO2. Appl Environ Microbiol 65:1540–1547

    PubMed  CAS  Google Scholar 

  • Fujimaki T (1998) Processability and properties of aliphatic polyesters, “BIONELLE”, synthesized by polycondensation reaction. Polym Degrad Stabil 59:209–214

    CAS  Google Scholar 

  • Fukaya M, Tagami H, Tayama K, Okumura H, Kawamura Y, Beppu T (1989) Spheroplast fusion of Acetobacter aceti and its application to the breeding of strains for vinegar production. Agric Biol Chem 53:2435–2440

    CAS  Google Scholar 

  • Fukaya M, Park YS, Toda K (1992) Improvement of acetic acid fermentation by molecular breeding. J Appl Bacteriol 73:447–454

    CAS  Google Scholar 

  • Gasson MJ, DeVos WM (eds) (1994) genetics and biotechnology of lactic acid bacteria. Blackie Academic/Professional Publishers, London/New York

    Google Scholar 

  • Gerngross TU (1999) Can biotechnology move us toward a sustainable society? Nat Biotechnol 17:541–544

    PubMed  CAS  Google Scholar 

  • Gerngross TU, Martin DP (1995) Enzyme-catalyzed synthesis of poly[R-(-)-3-hydroxybutyrate]: formation of macroscopic granules in vitro. Proc Natl Acad Sci USA 92:6279–6283

    PubMed  CAS  Google Scholar 

  • Ghose TK, Bhadra A (1985) Acetic acid. In: Moo-Young M (ed) Biotechnology, vol 3. Pergamon Press, New York, pp 701–729

    Google Scholar 

  • Gilles M, Kerstens K, Hoste B, Janssens D, Kroppenstedt RM, Stephens MP, Teixeira KRS, Dobereiner J, DeLey J (1989) Acetobacter diazotrophicus sp. nov. a nitrogen-fixing acetic acid bacterium associated with sugar cane. Int J Syst Bacteriol 39:361–364

    Google Scholar 

  • Glassner DA, Datta R (1992) Process for the production and purification of succinic acid. US Patent 5,143, 834

    Google Scholar 

  • Gokarn RR, Eiteman MA, Martin SA, Eriksson KEL (1997a) Production of succinate from glucose, cellobiose, and various cellulosic materials by the ruminal anaerobic bacteria Fibrobacter succinogenes and Ruminococcus flavefaciens. Appl Biochem Biotechnol 68:69–80

    PubMed  CAS  Google Scholar 

  • Gokarn RR, Eiteman MA, Sridhar J (1997b) Production of succinate by anaerobic microorganisms. Am Chem Soc Symp Ser 666:237–253

    CAS  Google Scholar 

  • Gokarn RR, Eiteman MA, Altman E (1998) Expression of pyruvate carboxylase enhances succinate production in Escherichia coli without affecting glucose uptake. Biotechnol Lett 20:795–798

    CAS  Google Scholar 

  • Gokarn RR, Eiteman MA, Altman E (1999) Pyruvate carboxylase overexpression for enhanced production of oxalacetate-derived biochemicals in microbial cells. PCT International Patent Application WO 99/53035

    Google Scholar 

  • Goldberg I, Lonberg-Holm K, Bagley EA, Stieglitz B (1983) Improved conversion of fumarate to succinate by Escherichia coli strains amplified for fumarate reductase. Appl Env Microbiol 45:1838–1847

    CAS  Google Scholar 

  • Gosalbes MJ, Esteban CD, Galan JL, Perez-Martinez G (2000) Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei. Appl Environ Microbiol 66:4822–4828

    PubMed  CAS  Google Scholar 

  • Gottschalk G (1985) Bacterial metabolism, 2nd edn. Springe, New York, p 247

    Google Scholar 

  • Gottschalk G (1986) Bacterial metabolism, 2nd edn. Springer, New York, pp 97–98

    Google Scholar 

  • Gruber PR, Hall ES, Kolstad JJ, Iwen ML, Benson RD, Borchardt RL (1992) Continuous process for manufacture of lactide polymers with controlled optical purity. US Patent to Cargill, Inc 5,142,0023

    Google Scholar 

  • Gruber PR, Hall ES, Kolstad JJ, Iwen ML, Benson RD, Borchardt RL (1994) Continuous process for manufacture of lactide polymers with purification by distillation. US Patent to Cargill, Inc 5,357,035

    Google Scholar 

  • Guettler MV, Jain MK (1996) Method for making succinic acid, Anaerobiospirillum succiniciproducens variants for use in process and methods for obtaining variants. US Patent 5,521,075

    Google Scholar 

  • Guettler MV, Jain MK, Rumler D (1996a) Method for making succinic acid, bacterial variants for use in the process, and methods for obtaining variants. US Patent 5,573, 931

    Google Scholar 

  • Guettler MV, Jain MK, Soni BK (1996b) Process for making succinic acid, microorganisms for use in the process and methods of obtaining the microorganisms. US Patent 5,504,004

    Google Scholar 

  • Guettler MV, Jain MK, Soni BK (1998) Process for making succinic acid, microorganisms for use in the process and methods of obtaining the microorganisms. US Patent 5,723,322

    Google Scholar 

  • Guettler MV, Rumler D, Jain MK (1999) Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. Int J Syst Bacteriol 49:207–216

    PubMed  CAS  Google Scholar 

  • Gupta A, Verma V, Quazi GN (1997) Transposon induced mutation in Gluconobacter oxydans with special reference to its direct glucose oxidation metabolism. FEMS Microbiol Lett 147:181–188

    PubMed  CAS  Google Scholar 

  • Gupta A, Felder M, Yerma Y, Cullum J, Qazi GN (1999) A mutant of Gluconobacter oxydans deficient in gluconic acid dehydrogenase. FEMS Microbiol Lett 179:501–506

    PubMed  CAS  Google Scholar 

  • Hahn JJ, Eschenlauer AC, Narrol MH, Somers DA, Sriene F (1997) Growth kinetics, nutrient uptake, and expression of the Alcaligenes eutrophus poly(β-hydroxybutyrate) synthesis pathway in transgenic maize cell suspension cultures. Biotechnol Prog 13:347–354

    PubMed  CAS  Google Scholar 

  • Han IS, Cheryan M (1996) Downstream processing of acetate fermentation broths by nanofiltration. Appl Biochem Biotechnol 57(58):19–28

    Google Scholar 

  • Harlander SK (1987) Transformation of Streptococcus lactis by electroporation. In: Ferretti J, Curtiss R (eds) Streptococcal genetics. American Society for Microbiology, Washington, pp 229–233

    Google Scholar 

  • Haywood GW, Anderson AJ, Chu L, Dawes EA (1988) The role of NADH-and NADPH-linked acetoacetyl-CoA reductases in the poly-3-hydroxybutyrate synthesizing organism Alcaligenes eutrophus. FEMS Microbiol Lett 52:259–264

    CAS  Google Scholar 

  • Hein S, Tran H, Steinbüchel A (1998) Synechocystis sp. PCC6803 possesses a two-component polyhydroxyalkanoic acid synthase similar to that of anoxygenic purple sulfur bacteria. Arch Microbiol 170:162–170

    PubMed  CAS  Google Scholar 

  • Herrick HT, May OE (1928) The production of gluconic acid by the Penicillium luteum purpurogenum group II: some optimal conditions for acid formation. J Biol Chem 77:185–195

    CAS  Google Scholar 

  • Hlasiwetz H, Habermann J (1870) Zur Kenntnis einiger Zuckerarten (Glucose, Rhorzucker, Levulose, Sorbin, Phloroglucin). Ann Chem Pharm 155:128–144

    Google Scholar 

  • Ho K-LG, Pometto AL 3rd, Hinz PN (1997) Optimization of L-(+)-lactic acid production by ring and disc plastic composite supports through repeated-batch biofilm fermentation. Appl Environ Microbiol 63:2533–2542

    PubMed  CAS  Google Scholar 

  • Hocking PJ, Marchessault RH (1994) Biopolymers. In: Griffin GJL (ed) Chemistry and technology of biodegradable polymers. Chapman and Hall, London, pp 48–96

    Google Scholar 

  • Holten CM, Muller A, Rehbinder D (eds) (1971) Lactic acid. Weinheim/Bergstr Germany

    Google Scholar 

  • Howaldt M, Gottlob A, Kulba KD, Chmiel H (1988) Simultaneous conversion of glucose/fructose mixtures in a membrane reactor. Ann NY Acad Sci 542:400–405

    CAS  Google Scholar 

  • Howaldt M, Kulbe KD, Chmiel H (1990) A continuous enzyme membrane reactor retaining native nicotinamide cofactor NAD (H). Ann NY Acad Sci 589:253–260

    CAS  Google Scholar 

  • Hrabak O (1992) Industrial production of poly-β-hydroxybutyrate. FEMS Microbiol Rev 103:251–256

    CAS  Google Scholar 

  • Hromatka O, Ebner H (1949) Investigations on vinegar fermentation: generator for vinegar fermentation and aeration procedures. Enzymologia 13:369

    CAS  Google Scholar 

  • Huang Y, Yang ST (1998) Acetate production from whey lactose using co-immobilized cells of homolactic and homoacetic bacteria in a fibrous-bed bioreactor. Biotechnol Bioeng 60:498–507

    PubMed  CAS  Google Scholar 

  • Huang YL, Mann K, Mavak JM (1998) Acetic acid production from fructose by Clostridium formicaceticum immobilized in a fibrous bed bioreactor. Biotechnol Prog 14:800–806

    Google Scholar 

  • Inskeep GC, Taylor GG, Breitzke WC (1952) Lactic acid from corn sugar. Ind Eng Chem 44:1955–1966

    CAS  Google Scholar 

  • Isbell HS, Frush HL, Bates FJ (1932) Manufacture of calcium gluconate by electrolytic oxidation of glucose. Ind Eng Chem 24:375–378

    CAS  Google Scholar 

  • Ishizaki A, Taga N, Takeshita T, Sugimoto T, Tsuge T, Tanaka K (1997) Microbial production of biodegradable plastics from carbon dioxide and agricultural waste material. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass. American Chemical Society, Washington, DC, pp 295–306

    Google Scholar 

  • Iversen T-G, Standal R, Pederson T, Caucheron DH (1994) IS 1032 from Acetobacter xylinum, a new mobile insertion sequence. Plasmid 32:46–54

    PubMed  CAS  Google Scholar 

  • Jabalquinto AM, Laivenieks M, Zeikus JG, Cardemil E (1999) Characterization of the oxaloacetate decarboxylase and pyruvate kinase-like activities of Saccharomyces cerevisiae and Anaerobiospirillum succiniciproducens phosphoenolpyruvate carboxykinases. J Prot Chem 18:659–664

    CAS  Google Scholar 

  • Jarvis L (2001) Lactic acid outlook up as polylactide nears market. Chem Mark Repor 259(9) 5, 14

    Google Scholar 

  • Jendrossek D, Backhaus M, Andermann M (1995) Characterization of the Comamonas sp. poly(3-hydroxybutyrate) (PHB) depolymerase and of its structural gene. Can J Microbiol 41:160–169

    PubMed  CAS  Google Scholar 

  • Jendrossek D, Schirmer A, Schlegel HG (1996) Biodegradation of polyhydroxyalkanoic acids. Appl Microbiol Biotechnol 46:451–463

    PubMed  CAS  Google Scholar 

  • John ME, Keller G (1996) Metabolic pathway engineering in cotton: biosynthesis of polyhydroxybutyrate in fiber cells. Proc Natl Acad Sci USA 93:12768–12773

    PubMed  CAS  Google Scholar 

  • Jones RP, Greenfield P (1982) Effect of carbon dioxide on yeast growth and fermentation. Enz Microbiol Technol 4:210–223

    CAS  Google Scholar 

  • Jossek R, Steinbüchel A (1998) In vitro synthesis of poly-(3-hydroxybutyric acid) by using an enzymatic coenzyme A recycling system. FEMS Microbiol Lett 168:319–324

    PubMed  CAS  Google Scholar 

  • Kandler O, Weiss N (1986) In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore, pp 1208–1234, http://www.cme.msu.edu/bergeys

  • Kaneuchi C, Seki M, Komagata K (1988) Production of succinic acid from citric acid and related acids by Lactobacillus strains. Appl Environ Microbiol 54:3053–3056

    PubMed  CAS  Google Scholar 

  • Kansiz M, Billman-Jacobe H, McNaughton D (2000) Quantitative determination of the biodegradable polymer poly(β-hydroxybutyrate) in a recombinant Escherichia coli strain by use of mid-infrared spectroscopy and multivariative statistics. Appl Environ Microbiol 66:3415–3420

    PubMed  CAS  Google Scholar 

  • Kawaguchi Y, Doi Y (1990) Structure of native poly(3-hydroxybutyrate) granules characterized by X-ray diffraction. FEMS Microbiol Lett 70:151–156

    CAS  Google Scholar 

  • Kawaguchi Y, Doi Y (1992) Kinetics and mechanism of synthesis and degradation of poly(3-hydroxybutyrate) in Alcaligenes eutrophus. Macromolecules 25:2324–2329

    CAS  Google Scholar 

  • Kennedy JF, Humphreys JD, Barker SA, Greenshields RN (1980) Application of living immobilized cells to the acceleration of the continuous conversions of ethanol (wort) to acetic acid (vinegar) by hydrous titanium (IV) oxide-immobilized Acetobacter species. Enz Microbiol Technol 2:209–216

    CAS  Google Scholar 

  • Kim DM, Kim HS (1992) Continuous production of gluconic acid and sorbitol from Jerusalem artichoke and glucose using an oxido reductase from Zymomonas mobilis and inulinase. Biotechnol Bioeng 39:336–342

    PubMed  CAS  Google Scholar 

  • Kim BS, Lee SY, Chang HN (1992) Production of poly-beta-hydroxybutyrate by fed-batch culture of recombinant Escherichia coli. Biotechnol Lett 14:811–816

    CAS  Google Scholar 

  • Kim BS, Lee SC, Lee SY, Chang HN, Chang YK, Woo SI (1994) Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol Bioeng 43:892–898

    PubMed  CAS  Google Scholar 

  • Kim SW, Kim P, Lee HS, Kim JH (1996) High production of poly-beta-hydroxybutyrate (PHB) from Methylobacterium organophilum under potassium limitation. Biotechnol Lett 18:25–30

    CAS  Google Scholar 

  • Kim GJ, Lee IY, Yoon SC, Shih YC, Park YH (1997) Enhanced yield and a high production of medium-chain-length poly(3-hydroxyalkanoates) in a two-step fed-batch cultivation of Pseudomonas putida by combined use of glucose and octanoate. Enz Microb Technol 20:500–505

    CAS  Google Scholar 

  • Kirschner EM (1996) Growth of top 50 chemicals slowed from very high 1994 rate. Chem Eng News 74(15):16–19

    Google Scholar 

  • Klaenhammer TR, Fitzgerald GF (1994) Bacteriophages and bacteriophage resistance. In: Gasson MJ, DeVos WM (eds) Genetics and biotechnology of lactic acid bacteria. Blackie Academic/Professional Publishers, London/New York, pp 106–168

    Google Scholar 

  • Klinke S, de Roo G, Witholt B, Kessler B (2000) Role of phaD in accumulation of medium-chain-length poly(3-hydroxyalkanoates) in Pseudomonas oleovorans. Appl Environ Microbiol 66:3705–3710

    PubMed  CAS  Google Scholar 

  • Knauf HJ, Vogel RF, Hammes WP (1992) Cloning, sequence, and phenotypic expression of KatA which encodes the catalase of Lactobacillus sake LTH677. Appl Environ Microbiol 58:832–839

    PubMed  CAS  Google Scholar 

  • Kok J, DeVos JM (1994) The proteolytic system of lactic acid bacteria. In: Gasson MJ, DeVos WM (eds) Genetics and biotechnology of lactic acid bacteria. Blackie Academic/Professional Publishers, London, New York, pp 169–210

    Google Scholar 

  • Kondo K, Horinouchi S (1997) A new insertion sequence IS 1452 from Acetobacter pasteurianus. Microbiology 143:539–546

    PubMed  CAS  Google Scholar 

  • Kosaric N (1996) Ethanol-potential source of energy and chemical products. In: Rehm HJ, Reed G (eds) Biotechnology, vol 6. VCH, New York, pp 123–203

    Google Scholar 

  • Kutzing FT (1837) Prakt Chem J 11:385

    Google Scholar 

  • Kwon YJ, Kaol R, Mattiasson B (1996) Extractive lactic acid fermentation in poly (ethyleneimine)-based aqueous two-phase system. Biotechnol Bioeng 50:280–290

    PubMed  CAS  Google Scholar 

  • Laivenieks M, Vielle C, Zeikus JG (1997) Cloning, sequencing, and overexpression of the Anaerobiospirillum succiniciproducens phosphoenolpyruvate carboxykinase (pckA) gene. Appl Env Microbiol 63:2272–2280

    Google Scholar 

  • Landucci R, Goodman B, Wyman C (1994) Methodology for evaluating the economics of biologically producing chemicals and materials from alternative feedstocks. Appl Biochem Biotechnol 45/46:677–696

    Google Scholar 

  • Layman P (1998) Acetic acid industry gears up for possible building boom. Chem Eng News 76(31):17–18

    Google Scholar 

  • Leaf TA, Peterson MS, Stoup SK, Somers D, Srienc F (1996) Saccharomyces cerevisiae expressing bacterial polyhydroxybutyrate synthase produces poly-3-hydroxybutyrate. Microbiol 142:1169–1180

    CAS  Google Scholar 

  • Lee SY (1996a) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14

    PubMed  CAS  Google Scholar 

  • Lee SY (1996b) Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol 14:431–438

    CAS  Google Scholar 

  • Lee SY (1997) E. coli moves into the plastic age. Nat Biotechnol 15:17–18

    PubMed  CAS  Google Scholar 

  • Lee SY, Chang HN (1995a) Production of poly(hydroxyalkanoic acid). Adv Biochem Eng Biotechnol 52:27–58

    PubMed  CAS  Google Scholar 

  • Lee SY, Chang HN (1995b) Production of poly(3-hydroxybutyric acid) by recombinant Escherichia coli strains: genetic and fermentation studies. Can J Microbiol 41(Suppl 1):207–215

    PubMed  CAS  Google Scholar 

  • Lee SY, Lee YK, Chang HN (1995) Stimulatory effects of amino acids and oleic acid on poly(3-hydroxybutyric acid) synthesis by recombinant Escherichia coli. J Ferment Bioeng 79:177–180

    CAS  Google Scholar 

  • Lee IY, Kim MK, Park YH, Lee SY (1996) Regulatory effects of cellular nicotinamide nucleotides and enzyme activities on poly(3-hydroxybutyrate) synthesis in recombinant Escherichia coli. Biotechnol Bioeng 52:707–712

    PubMed  CAS  Google Scholar 

  • Lee PC, Lee WG, Kwon S, Lee SY, Chang HN (1999a) Succinic acid production by Anaerobiospirillum succiniciproducens: effects of the H2/CO2 supply and glucose concentration. Enz Microbiol Technol 24:549–554

    CAS  Google Scholar 

  • Lee PC, Lee WG, Lee SY, Chang HN (1999b) Effects of medium components on the growth of Anaerobiospirillum succiniciproducens and succinic acid production. Proc Biochem 35:49–55

    CAS  Google Scholar 

  • Lee SY, Lee Y, Wang FL (1999c) Chiral compounds from bacterial polyesters: sugars to plastics to fine chemicals. Biotechnol Bioeng 65:363–368

    PubMed  CAS  Google Scholar 

  • Leh MB, Charles M (1989) The effect of whey protein hydrolyzate average molecular weight on the lactic acid fermentation. J Ind Microbiol 4:77–80

    CAS  Google Scholar 

  • Leigh JA, Mayer F, Wolfe RS (1981) Acetogenium kivui a new thermophilic hydrogen-oxidizing, acetogenic bacterium. Arch Microbiol 129:275–280

    CAS  Google Scholar 

  • Lemoigne M (1925) Etudes sur l'autolyze microbienne acidification par formation d'acide β-oxybutyrique. Ann Inst Pasteur 39:144–173

    Google Scholar 

  • Lemoigne M (1926) Produits de déshydration et de polymérisation de l'acide β-oxybutyrique. Bull Soc Chim Biol 8:770–782

    CAS  Google Scholar 

  • Lemoigne M, Girard H (1943) Réserves lipidiques β-hydroxybutyriques chez Azotobacter chroococcum. Comp Rend Acad Sci 217:557–558

    CAS  Google Scholar 

  • Liebergesell M, Hustede E, Timm A, Steinbüchel A, Fuller RC, Lenz RW, Schlegel HG (1991) Formation of poly(3-hydroxyalkanoates) by phototrophic and chemolithotrophic bacteria. Arch Microbiol 155:415–421

    CAS  Google Scholar 

  • Lin RW, Atkinson EE, Balhoff DE (1996) Process for producing (S,S)-ethylenediamine-N,N′-disuccinic acid. US Patent 5554791

    Google Scholar 

  • Lin M-Y, Harlander S, Saviano D (1999) Construction of an integrative food-grade cloning vector for Lactobacillus acidophilus. Appl Microb Biotechnol 45:484–489

    Google Scholar 

  • Lipinsky ES, Sinclair RG (1986) Is lactic acid a commodity chemical? Chem Eng Prog 82(8):26–32

    CAS  Google Scholar 

  • Litchfield JH (1996) Microbial production of lactic acid. Adv Appl Microbiol 42:45–95

    PubMed  CAS  Google Scholar 

  • Liu S-J, Steinbüchel A (2000a) Exploitation of butyrate kinase and phosphotransbutyrylase from Clostridium acetobutylicum for the in vitro biosynthesis of poly(hydroxyalkanoic acid). Appl Microbiol Biotechnol 53:545–552

    PubMed  CAS  Google Scholar 

  • Liu S-J, Steinbüchel A (2000b) A novel genetically engineered pathway for synthesis of poly(hydroxyalkanoic acids) in Escherichia coli. Appl Environ Microbiol 66:739–743

    PubMed  CAS  Google Scholar 

  • Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Ann Rev Microbiol 40:415–450

    CAS  Google Scholar 

  • Ljungdahl LG (1994) The acetyl-CoA pathway and the chemiosmotic generation of ATP during acetogenesis. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 63–85

    Google Scholar 

  • Lockwood LB, Yoder DE, Zienty M (1965) Lactic acid. Ann NY Acad Sci 119:854–867

    PubMed  CAS  Google Scholar 

  • Loos H, Krämer R, Sahm H, Sprenger GA (1994) Sorbitol promotes growth of Zymomonas mobilis in environment with high concentrations of sugar: evidence for a physiological function of glucose-fructose oxidoreductase in osmoprotection. J Bacteriol 176:7688–7693

    PubMed  CAS  Google Scholar 

  • Lorowitz WH, Bryant MP (1984) Peptostreptococcus productus strain that grows rapidly with CO as an energy source. Ann Environ Microbiol 47:961–964

    CAS  Google Scholar 

  • Luchansky JB, Muriana PM, Klaenhammer TR (1988) Application of electroporation for transfer of plasmid DNA to Lactobacillus, Lactococcus, Leuconostoc, Listeria, Pediococcus, Bacillus, Staphylococcus, Enterococcus, and Propionibacterium. Molec Microbiol 2:637–646

    CAS  Google Scholar 

  • Luttik MAH, Van Spanning R, Schipper D, Van Dijken JP, Pronk JT (1997) The low biomass yields of the acetic acid bacterium Acetobacter pasteurianus are due to a low stoichiometry of respiration-coupled proton translocation. Appl Environ Microbiol 63:3345–3351

    PubMed  CAS  Google Scholar 

  • Maddox IS (1996) Microbial production of 2, 3-butanediol. In: Rehm HJ, Reed G (eds) Biotechnology, vol 6, 2nd edn. VCH, New York, pp 270–291

    Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Molec Biol Rev 63:21–53

    CAS  Google Scholar 

  • Martin MC, Alonso JC, Suarez JE, Alvarez MA (2000) Generation of food-grade recombinant lactic acid bacterium strains by site-specific recombination. Appl Environ Microbiol 66:2599–2604

    PubMed  CAS  Google Scholar 

  • Mat-Jan F, Alam KY, Clark DP (1989) Mutants of Escherichia coli deficient in the fermentative lactate dehydrogenase. J Bacteriol 171:342–348

    PubMed  CAS  Google Scholar 

  • Matsusaki H, Abe H, Taguchi K, Fukui T, Doi Y (2000) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant bacteria expressing the PHA synthase gene phaC1 from Pseudomonas sp. 61-3. Appl Microbiol Biotechnol 53:401–409

    PubMed  CAS  Google Scholar 

  • Matsushita K, Toyama H, Adachi O (1994) Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol 36:247–301

    PubMed  CAS  Google Scholar 

  • May OE, Herrick HT, Moyer AJ, Wells PA (1934) Gluconic acid-production by submerged mold growths under increased air pressure. Ind Eng Chem 26:575–578

    CAS  Google Scholar 

  • McCoy M (1998) Biomass ethanol inches forward. Chem Eng News 76:29–32

    Google Scholar 

  • McGee H (1984) On food and cooking: the science and lore of the kitchen. Scribner, New York, p 36

    Google Scholar 

  • Mercier P, Yerushalmi L, Rouleau D, Dochain D (1992) Kinetics of lactic acid fermentation on glucose and corn by Lactobacillus amylophilus. J Chem Tech Biotechnol 55:111–121

    CAS  Google Scholar 

  • Mesa MM, Caro I, Cantero D (1996) Viability reduction of Acetobacter aceti due to the absence of oxygen in submerged culture. Biotech Progr 12:709–712

    CAS  Google Scholar 

  • Millard CS, Chao YP, Liao JC, Donnelly MI (1996) Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli. Appl Env Microbiol 62:1808–1810

    CAS  Google Scholar 

  • Milson PE, Meers JL (1985) Gluconic and itaconic acids. In: Moo-Young M (ed) Comprehensive biotechnology, vol 3. Pergamon, Oxford, pp 681–700

    Google Scholar 

  • Misoph M, Drake HL (1996) Effect of CO2 on the fermentation capacities of the acetogen Peptostreptococcus productus U-1. J Bacteriol 178:3140–3145

    PubMed  CAS  Google Scholar 

  • Mobley DP (1994) Plastics from microbes. Hanser, Munich

    Google Scholar 

  • Möller B, Ossmer R, Howard BH, Gottschalk G, Hippe H (1984) Sporomusa, a new genus of Gram negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. Arch Microbiol 139:388–396

    Google Scholar 

  • Molliard M (1922) Survene nouvelle fermentation acide produite par le Sterigmatcystis nigra. CR Hebd Seances Acad Sci 174:881–883

    CAS  Google Scholar 

  • Mori A (1993) Vinegar production in a fluidized-bed reactor with immobilized bacteria. In: Tanaka A, Tosa T, Kobayashi T (eds) Industrial application of immobilized biocatalysts. Dekker, New York, pp 291–313

    Google Scholar 

  • Mori A, Tervi G (1972) Kinetic studies on submerged acetic acid fermentation. III: efficiency of energy metabolism in acetic acid fermentation using Acetobacter rancens. J Ferment Technol 50:510–517

    CAS  Google Scholar 

  • Moyer AJ, Wells PA, Stubbs JJ, Herrick HT, May OE (1937) Gluconic acid production-development of inoculum and composition of fermentation solution for gluconic acid production by submerged mold growths under increased air pressure. Ind Eng Chem 29:777–781

    CAS  Google Scholar 

  • Müller V, Gottschalk G (1994) The sodium ion cycle in acetogenic and methanogenic bacteria: generation and utilization of a primary electrochemical sodium ion gradient. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 125–156

    Google Scholar 

  • Muller HM, Seebach D (1993) Poly(hydroxyfettsaureester) eine funfte Klasse von physiologisch bedeutsamen organischen Biopolymeren? Agnew Chem 105:483–459

    Google Scholar 

  • Muraoka H, Watabe Y, Ogasawara N (1982) Effect of oxygen deficiency on acid production and morphology of bacterial cells in submerged acetic fermentation by Acetobacter aceti. J Ferment Technol 60:171–180

    CAS  Google Scholar 

  • Narayan R (1994) Impact of governmental policies, regulations, and standards activities on an emerging biodegradable plastics industry. In: Doi Y, Fukuda K (eds) Biodegradable plastics and polymers. Elsevier Science, Amsterdam, pp 261–272

    Google Scholar 

  • Nawrath C, Poirier Y, Somerville C (1994) Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Proc Natl Acad Sci USA 91:12760–12764

    PubMed  CAS  Google Scholar 

  • Nghiem NP, Davison BH, Thompson JE, Suttle BE, Richardson GR (1996) The effect of biotin on the production of succinic acid by Anaerobiospirillum succiniciproducens. Appl Biochem Biotechnol 57/58:633–638

    Google Scholar 

  • Nghiem NP, Davison BH, Suttle BE, Richardson GR (1997) Production of succinic acid by Anaerobiospirillum succiniciproducens. Appl Biochem Biotechnol 63–65:565–576

    PubMed  Google Scholar 

  • Nghiem NP, Donnelly MI, Millard CS (1999) Method for the production of dicarboxylic acids. US Patent 5,869,301

    Google Scholar 

  • Nickol GB (1979) Vinegar. In: Peppler HJ, Pearlman D (eds) Microbial technology, vol 2. Academic, New York, pp 155–172

    Google Scholar 

  • Nidetzky B, Furlinger M, Gollhofer D (1997) Improved operational stability of cell-free glucose-fructose oxidoreductase from Zymomonas mobilis for the efficient synthesis of gluconic acid and sorbitol, in acoutin ultra filtration membrane reactor. Biotechnol Bioeng 53:623–629

    PubMed  CAS  Google Scholar 

  • Nishioka M, Tuzuki T, Wanajyo Y, Oonami H, Horiuchi T (1994) Biodegradation of Bionolle. Stud Polym Sci 12:584–590

    CAS  Google Scholar 

  • Noury M, van der Lande NV (1962) Process for preparation of gluconic acid monohydrate. British Patent 902609. Chem Abstr 57:13020g

    Google Scholar 

  • Oben JM, Amagro MJ, Manjon A (1996) Continuous retention of native NADP(H) in an enzyme membrane reactor for gluconate and glutamate production. J Biotechnol 50:27–36

    Google Scholar 

  • Okumura H, Tagami H, Fukaya M, Masai H, Kawamura Y, Horinouchi S, Beppu T (1988) Cloning of the β-isopropylmalate dehydrogenase gene from Acetobacter aceti and its use for construction of a new host vector system for Acetobacter. Agric Biol Chem 52:3125–3129

    CAS  Google Scholar 

  • Olijve W, Kok JJ (1979) Analysis of growth of Gluconobacter oxydans in glucose containing medium. Arch Microbiol 121:283–290

    CAS  Google Scholar 

  • Osuga J, Mori A, Kato J (1984) Acetic acid production by immobilized Acetobacter aceti cells entrapped in a kappa-carrageenan gel. J Ferment Technol 62:139–149

    CAS  Google Scholar 

  • Othmer K (1983) Succinic acid and succinic anhydride. In: Othmer K (ed) Encyclopedia of chemical technology, 3rd edn, vol 21, Wiley, pp 848–864

    Google Scholar 

  • Page WJ, Cornish A (1993) Growth of Azotobacter vinelandii UWD in fish peptone medium and simplified extraction of poly-beta-hydroxybutyrate. Appl Environ Microbiol 59:4236–4244

    PubMed  CAS  Google Scholar 

  • Pan JG, SooSA, Park CK, Kim P, Chang DE, Kim JE (1999) A pta ldhA double mutant Escherichia coli SS373 and the method of producing succinic acid therefrom. PCT Application WO 99/06532

    Google Scholar 

  • Parekh SR, Cheryan M (1991) Production of acetate by mutant strains of Clostridium thermoaceticum. Appl Microbiol Biotechnol 36:384–387

    CAS  Google Scholar 

  • Parekh SR, Cheryan M (1994a) Continuous production of acetate by Clostridium thermoaceticum in a cell-recycle membrane bioreactor. Enz Microb Technol 16:104–109

    CAS  Google Scholar 

  • Parekh SR, Cheryan M (1994b) High concentrations of acetate with a mutant strain of Clostridium thermoaceticum. Biotechnol Lett 16:139–142

    CAS  Google Scholar 

  • Park DH, Zeikus GK (1999) Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J Bacteriol 181:2403–2410

    PubMed  CAS  Google Scholar 

  • Park YS, Ohtake H, Fukaya M, Okumura H, Kawamura Y, Toda K (1989) Acetic acid production using a fermenter equipped with a hollow fiber filter module. Biotechnol Bioeng 33:918–923

    PubMed  CAS  Google Scholar 

  • Park YS, Ohtake H, Fukaya M, Kawamura H, Toda K (1991) Production of high concentration of acetic acid by Acetobacter aceti using a repeated fed-batch culture with cell recycling. Appl Microbiol Biotechnol 35:149–153

    CAS  Google Scholar 

  • Parrer G, Schroll G, Gapes JR, Lubitz W, Schuster KC (2000) Conversion of solvent evaporation residues from the AB-(acetone-butanol) bioprocess into bacterial cells accumulating thermoplastic polyesters. J Molec Microbiol Biotechnol 2:81–86

    CAS  Google Scholar 

  • Pasteur L (1868) Etudes sur le vinaigre, sa fabrication se maladres, moyens de les préveair nouvelles observations sur la conservation des vinc par la châleur. Gauthier-Villars, Paris

    Google Scholar 

  • Peoples OP, Sinskey AJ (1987) Biosynthetic thiolase from Zoogloea ramigera III: isolation and characterization of the structural gene. J Biol Chem 262:97–102

    PubMed  CAS  Google Scholar 

  • Peoples OP, Sinskey AJ (1989) Poly-β-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16: characterization of the genes encoding β-ketothiolase and acetoacetyl-CoA reductase. J Biol Chem 264:15293–15297

    PubMed  CAS  Google Scholar 

  • Phillips MA (1963) Catalytic hydrogenation of glucose to sorbitol using a highly active catalyst. Br Chem Eng 8(11):767–769

    CAS  Google Scholar 

  • Planas J, Radström P, Tjerneld F, Hahn-Hägerdal B (1996) Enhanced production of lactic acid through the use of a novel aqueous two-phase system as an extractive fermentation system. Appl Microbiol Biotechnol 45:737–743

    CAS  Google Scholar 

  • Podkovyrov SM, Zeikus JG (1993) Purification and characterization of phosphoenolpyruvate carboxykinase, a catabolic CO2-fixing enzyme, from Anaerobiospirillum succiniciproducens. J Gen Microbiol 139:223–228

    PubMed  CAS  Google Scholar 

  • Poehland HD, Schierz V, Schumann R (1993) Optimization of gluconic acid synthesis by removing limitations and inhibitions. Acta Biotechnol 13:257–268

    CAS  Google Scholar 

  • Poirier Y, Dennis DE, Klomparens K, Somerville C (1992) Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science 256:520–522

    PubMed  CAS  Google Scholar 

  • Poirier Y, Nawrath C, Somerville C (1995) Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Bio/technology 13:142–150

    PubMed  CAS  Google Scholar 

  • Posno M, Heuvelmans PTHM, van Giezen MJF, Lokman BC, Leer RJ, Pouwels PH (1991) Complimentation of the inability of Lactobacillus strains to utilize D-xylose with D-xylose catabolism-encoding genes of Lactobacillus pentosus. Appl Environ Microbiol 57:2764–2766

    PubMed  CAS  Google Scholar 

  • Pries A, Steinbüchel A, Schlegel HG (1990) Lactose-utilizing and galactose-utilizing strains of poly(hydroxyalkanoic acid)-accumulating Alcaligenes eutrophus and Pseudomonas saccharophila obtained by recombinant DNA technology. Appl Microbiol Biotechnol 33:410–417

    CAS  Google Scholar 

  • Prieto MA, Buhler B, Jung K, Witholt B, Kessler B (1999a) PhaE, a polyhydroxyalkanoate-granule-associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes. J Bacteriol 181:858–868

    PubMed  CAS  Google Scholar 

  • Prieto MA, Kellerhals MB, Bozzato GB, Radnovic D, Witholt B, Kessler B (1999b) Engineering of stable recombinant bacteria for production of chiral medium-chain-length poly-3-hydroxyalkanoates. Appl Environ Microbiol 65:3265–3271

    PubMed  CAS  Google Scholar 

  • Pronk JT, Levering PR, Olijve W, Van Dijken JP (1989) The role of NADP-dependent and quino protein glucose dehydrogenase in gluconic acid production by Gluconobacter oxydans. Enz Microb Technol 11:160–164

    CAS  Google Scholar 

  • Ragsdale SW (1994) CO dehydrogenase and the central role of this enzyme in fixation of carbon-dioxide by anaerobic bacteria. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 88–126

    Google Scholar 

  • Rehm BHA, Kruger N, Steinbüchel A (1998) A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. J Biol Chem 237:24044–24051

    Google Scholar 

  • Rehr B, Wilhelm C, Sahm H (1991) The production of sorbitol and gluconic acid by permeabilized cells of Zymomonas mobilis. Appl Microbiol Biotechnol 35:144–148

    CAS  Google Scholar 

  • Reisch MS (1999) Vision 2020 comes into focus. Chem Eng News 77(32):10–12

    Google Scholar 

  • Ren Q, Sierro N, Kellerhals M, Kessler B, Witholt B (2000) Properties of engineered poly-3-hydroxyalkanoates produced in recombinant Esherichia coli strains. Appl Environ Microbiol 66:1311–1320

    PubMed  CAS  Google Scholar 

  • Reusch RN (1992) Biological complexes of poly-β-hydroxybutyrate. FEMS Microbiol Rev 103:119–130

    CAS  Google Scholar 

  • Reusch RN, Sadoff HL (1988) Putative structure and functions of a poly-β-hydroxybutyrate/calcium polyphosphate channel in bacterial plasma membranes. Proc Natl Acad Sci USA 85:4176–4180

    PubMed  CAS  Google Scholar 

  • Reusch RN, Sparrow A (1992) Transport of poly-β-hydroxybutyrate in human plasma. Biochim Biophys Acta 1123:33–40

    PubMed  CAS  Google Scholar 

  • Ro HS, Kim HS (1991) Continuous production of gluconic acid and sorbitol from sucrose using invertase and an oxidoreductase from Zymomonas mobilis. Enz Microb Technol 13:920–924

    CAS  Google Scholar 

  • Roehr M, Kubicek CP, Kominek J (1996) Gluconic acid. In: Roehr M (ed) Biotechnology, 2nd edn. VCH, New York, pp 348–362

    Google Scholar 

  • Saeki A, Taniguchi M, Matsushita K, Yoyama H, Theeragol G, Lotong N, Adachi O (1997a) Microbial aspects of acetate oxidation by acetic acid bacteria, unfavorable phenomena in vinegar fermentation. Biosci Biotech Biochem 61:317–323

    CAS  Google Scholar 

  • Saeki A, Theeragol G, Matsushita K (1997b) Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at high temperature. Biosci Biotech Biochem 61:138–145

    CAS  Google Scholar 

  • Sakura H, Lee HW, Sato S, Mukataka S, Takahashi J (1989) Gluconic acid production by Aspergillus niger immobilized on nonwoven fabric. J Ferment Bioeng 67:404–408

    Google Scholar 

  • Samuelov NS, Lamed R, Lowe S, Zeikus JG (1991) Influence of CO2-HCO3-levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens. Appl Environ Microbiol 57:3013–3019

    PubMed  CAS  Google Scholar 

  • Samuelov NS, Datta R, Jain MK, Zeikus JG (1999) Whey fermentation by Anaerobiospirillum succinici producens for production of a succinate-based animal feed additive. Appl Env Microbiol 65:2260–2263

    CAS  Google Scholar 

  • Scheirlinck T, Mahillon J, Joos H, Dahaese P, Michiels F (1989) Integration and expression of α-amylase and endoglucanase genes in the Lactobacillus plantarum chromosome. Appl Environ Microbiol 55:2130–2137

    PubMed  CAS  Google Scholar 

  • Schilling LB (1995) Chemicals from alternative feedstocks in the United States. FEMS Microbiol Rev 16:101–110

    CAS  Google Scholar 

  • Schlegel HG, Gottschalk G, Von Vartha R (1961) Formation and utilization of poly-β-hydroxybutyric acid by Knallgas bacteria (Hydrogenomonas). Nature 191:463–465

    PubMed  CAS  Google Scholar 

  • Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus gene for synthesis of poly-β-hydroxybutyric acid and synthesis of PHB in Escherichia coli. J Bacteriol 170:5837–5847

    PubMed  CAS  Google Scholar 

  • Senthuran A, Senthuran V, Mathasson B, Kaul R (1997) Lactic acid fermentation in a recycle batch reactor using immobilized Lactobacillus casei. Biotechnol Bioeng 55:841–853

    PubMed  CAS  Google Scholar 

  • Shah MM, Cheryan M (1995a) Acetate production by Clostridium thermoaceticum in corn steep liquor media. J Ind Microbiol 15:424–428

    CAS  Google Scholar 

  • Shah MM, Cheryan M (1995b) Improvement of productivity in acetic acid fermentation with Clostridium thermoaceticum. Appl Biochem Biotechnol 51/52:418–422

    Google Scholar 

  • Shiraishi F, Kawakami K, Kono S, Tamura A (1989a) Continuous production of free gluconic acid by Gluconobacter suboxydans IFO 3290 immobilized by adsorption on ceramic honeycomb monolith: effect of reactor configuration on further oxidation of gluconic acid to ketogluconic acid. Appl Microbiol Biotechnol 31:445–447

    CAS  Google Scholar 

  • Shiraishi F, Kawakami K, Kono S, Tamura A, Tsuruta S, Kosmoki K (1989b) Characterization of production of free gluconic acid by Gluconobacter suboxydans absorbed on ceramic honeycomb monolith. Biotechnol Bioeng 33:1413–1418

    PubMed  CAS  Google Scholar 

  • Sievers M, Sellmer S, Teuber M (1992) Acetobacter europaeus sp. nov., a main component of industrial vinegar fermenters in central Europe. Syst Appl Microbiol 15:386–392

    Google Scholar 

  • Sievers M, Ludwig W, Teuber M (1994a) Phylogenetic positioning of Acetobacter, Gluconobacter, Rhodophila, and Acidiphilium species as a branch of acidophilic bacteria in the α-subclass of proteobacteria based on 16S ribosomal DNA sequences. Syst Appl Microbiol 17:189–196

    CAS  Google Scholar 

  • Sievers M, Ludwig W, Teuber M (1994b) Phylogenetic positioning of Acetobacter, Gluconobacter, Rhodophila and Acidiphilium species as a branch of acidophilic bacteria in the α subclass of Proteobacteria based on 16S RNA sequences. Syst Appl Microbiol 17:352–354

    CAS  Google Scholar 

  • Sievers M, Ludwig W, Teuber M (1994c) Revival of the species Acetobacter methanolicus (ex: Uhlig et al., 1986) nom. rev. Syst Appl Microbiol 17:352–354

    CAS  Google Scholar 

  • Silva-Martinez M, Haltrich D, Novalic S, Kobe KD, Nidetzky B (1998) Simultaneous enzymatic syntheses of gluconic acid and sorbitol. Appl Biochem Biotechnol 70–72:863–875

    PubMed  Google Scholar 

  • Silveira MM, Wisbeck E, Lemmel C (1999) Bioconversion of glucose and fructose to sorbitol and gluconic acid by untreated cells of Zymomonas mobilis. J Biotechnol 75:99–103

    PubMed  CAS  Google Scholar 

  • Slater S, Houmiel KL, Tran M, Mitsky TA, Taylor NB, Padgette SR, Gruys KJ (1998) Multiple β-ketothiolase mediate poly(β-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol 180:1979–1987

    PubMed  CAS  Google Scholar 

  • Slater S, Mitsky TA, Houmiel KL, Hao M, Reiser SE, Taylor NB, Tran M, Valentin HE, Rodriguez J, Stone DA, Padgette SR, Kishore G, Gruys KJ (1999) Metabolic engineering of Arabidopsis and Brassica for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production. Nat Biotechnol 17:1011–1016

    PubMed  CAS  Google Scholar 

  • Smith WP (1993) Soap/Cosmetic Specialties 9:54–58

    Google Scholar 

  • Sokollek SJ, Hammes WP (1997) Description of a starter culture preparation for vinegar fermentation. Syst Appl Microbiol 20:481–491

    CAS  Google Scholar 

  • Sokollek SJ, Hertel C, Hammes WP (1998) Cultivation and preservation of vinegar bacteria. J Biotechnol 60:195–206

    CAS  Google Scholar 

  • Steinbüchel A (1991) Polyhydroxyalkanoic acids. In: Byrom D (ed) Biomaterials: novel materials from biological sources. Macmillan, New York

    Google Scholar 

  • Steinbüchel A (1996) PHB and other polyhydroxyalkanoic acids. In: Roehr M (ed) Biotechnology, vol 6, 2nd edn. VCH, Weinheim, pp 403–464

    Google Scholar 

  • Steinbüchel A, Füchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16:419–427

    PubMed  Google Scholar 

  • Steinbüchel A, Gorenflo V (1997) Biosynthetic and biodegradable polyesters from renewable resources: current state and prospects. Macromol Symp 123:61–66

    Google Scholar 

  • Steinbüchel A, Schmack G (1995) Large-scale production of poly(3-hydroxyvaleric acid) by fermentation of Chromobacterium violaceum, processing, and characterization of the homopolyester. J Environ Polym Degrad 3:243–258

    Google Scholar 

  • Stols L, Donnelly MI (1997) Production of succinic acid through overexpression of NAD+-dependent malic enzyme in an Escherichia coli mutant. Appl Env Microbiol 63:2695–2701

    CAS  Google Scholar 

  • Stols L, Kulkarni G, Harris BG, Donnelly MI (1997) Expression of Ascaris suum malic enzyme in a mutant Escherichia coli allows production of succinic acid from glucose. Appl Biochem Biotechnol 63–65:153–158

    PubMed  Google Scholar 

  • Suzuki T, Yamane T, Shimizu S (1986) Mass production of poly-β-hydroxybutyric acid by fed-batch culture with controlled carbon/nitrogen feeding. Appl Microbiol Biotechnol 24:370–374

    CAS  Google Scholar 

  • Swings J (1992) The genera acetobacter and gluconobacter. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, vol 3. Springer, New York, pp 2268–2286, http://www.prokaryotes.com

  • Swings J, De Ley J (1977) The biology of Zymomonas. Bacteriol Rev 41:1–46

    PubMed  CAS  Google Scholar 

  • Szmant HH (1989) Organic building blocks of the chemical industry. Wiley, New York, pp 347–348

    Google Scholar 

  • Taguchi H, Ohata T (1991) D-Lactate dehydrogenase is a member of the D-isomer-specific 2-hydrox acid dehydrogenase family. J Biol Chem 266:12588–12594

    PubMed  CAS  Google Scholar 

  • Takahashi R, Fujimoto N, Suzuki M, Endo T (1997) Biodegradabilities of ethylenediamine-N, N-disuccinic acid (EDDS) and other chelating agents. Biosci Biotech Biochem 61:1957–1959

    CAS  Google Scholar 

  • Takemura H, Horinouchi S, Beppu T (1991) Novel insertion sequence IS1380 from Acetobacter pasteurianus is involved in loss of ethanol-oxidizing ability. J Bacteriol 173:7070–7076

    PubMed  CAS  Google Scholar 

  • Takiyama E, Fujimaki T (1994) “BIONELLE” biodegradable plastic through chemical synthesis. In: Doi Y, Fukuda K (eds) Biodegradable plastics and polymers. Elsevier Science, Amsterdam, pp 150–174

    Google Scholar 

  • Tanaka K, Ishizaki A, Kanamaru T, Kawano T (1995) Production of poly(D-3-hydroxybutyrate) from CO2, H2, and O2 by high cell-density autotrophic cultivation of Alcaligenes eutrophus. Biotechnol Bioeng 45:268–275

    PubMed  CAS  Google Scholar 

  • Taroncher-Oldenburg G, Nishia K, Stephanopoulos G (2000) Identification and analysis of polyhydroxyalkanoate-specific β-ketothiolase and acetoacetyl coenzyme A reductase genes in cyanobacterium Synechocystis sp. strain PCC6803. Appl Environ Microbiol 66:4440–4448

    PubMed  CAS  Google Scholar 

  • Thauer RK (1989) Biochemistry of acetic acid metabolism in anaerobic chemotropic bacteria. Ann Rev Microbiol 43:43–67

    CAS  Google Scholar 

  • Toda K, Park YS, Asakura T, Cheng CY, Ohtake H (1989) High rate acetic acid production in a shallow flow bioreactor. Appl Microbiol Biotechnol 30:559–563

    CAS  Google Scholar 

  • Tsai SP, Moon S-H (1998) An integrated bioconversion process for the production of L-lactic acid from starchy potato feed stocks. Appl Biochem Biotechnol 70–72:417–428

    PubMed  Google Scholar 

  • Tsao GT, Cao NJ, Du J, Gong CS (1999) Production of multifunctional organic acids from renewable resources. Adv Biochem Eng Biotechnol 65:243–280

    PubMed  CAS  Google Scholar 

  • Tullo A (1999) BDO market embraces new technologies. Chemical Market Reporter 26 April 1999

    Google Scholar 

  • Turk R (1993) Metal free and low metal salt substitutes containing lysine. US Patent 5229161

    Google Scholar 

  • Uhlig H, Kahrbaum K, Steudel A (1986) Acetobacter methanolicus sp. nov., an acetophilic facultatively methylotrophic bacterium. Int J Syst Bacteriol 36:317–322

    CAS  Google Scholar 

  • Valentin HE, Mitsky TA, Mahadeo DA, Tran M, Gruys KJ (2000a) Application of a propionyl coenzyme A synthetase for poly(3-hydroxypropionate-co-3-hydroxybutyrate) accumulation in recombinant Escherichia coli. Appl Environ Microbiol 66:5253–5258

    PubMed  CAS  Google Scholar 

  • Valentin HE, Reiser S, Gruys KJ (2000b) Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) formation from γ-aminobutyrate and glutamate. Biotechnol Bioeng 67:291–299

    PubMed  CAS  Google Scholar 

  • Van der Werf MJ, Guettler MV, Jain MK, Zeikus JG (1997) Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z. Arch Microbiol 167:332–342

    PubMed  Google Scholar 

  • Varadarajan S, Miller DJ (1999) Catalytic upgrading of fermentation-derived organic acids. Biotechnol Prog 15:845–854

    PubMed  CAS  Google Scholar 

  • Verhave TH (1930) Verfahren zur bacteriellen oxydation organisher Verbindugen zwecks Herstellungen von Oxydationsprodukten wie Dioxyacton usw. German Patent 563,758. Chem Abstr 27:1085

    Google Scholar 

  • Vick Roy TB (1985) Lactic acid. In: Moo Young M (ed) Comprehensive biotechnology. Pergamon Press, Oxford/New York, pp 761–776

    Google Scholar 

  • Walker SA, Klaenhammer TR (2000) An explosive antisense RNA strategy for inhibition of a lactococcal bacteriophage. Appl Environ Microbiol 66:310–319

    PubMed  CAS  Google Scholar 

  • Wang T-T, Lee BH (1997a) Plasmids in Lactobacillus. Crit Rev Biotechnol 17:227–272

    PubMed  CAS  Google Scholar 

  • Wang FL, Lee SY (1997b) Poly(3-hydroxybutyrate) production with high productivity and high polymer content by a fed-batch culture of Alcaligenes latus under nitrogen limitation. Appl Environ Microbiol 63:3703–3706

    PubMed  CAS  Google Scholar 

  • Wang F, Lee SY (1998) High cell density culture of metabolically engineered Escherichia coli for the production of poly(3-hydroxybutyrate) in a defined medium. Biotechnol Bioeng 58:325–328

    PubMed  CAS  Google Scholar 

  • Wang X, Gong CS, Tsao GT (1998) Bioconversion of fumaric acid to succinic acid by recombinant E. coli. Appl Biochem Biotechnol 70–72:919–928

    Google Scholar 

  • Weusthuis RA, Huijberts GNM, Eggink G (1997) In: Eggink G, Steinbuchel A, Poirer Y, Witholt B (eds) Proceedings of the 1996 international symposium on bacterial polyhydroxyalkanoates. Production for MCL-polyhydroxyalkanoates. NRC Research Press, Davos, Switzerland, pp 102–109

    Google Scholar 

  • White D (1995) The physiology and biochemistry of prokaryotes. Oxford University Press, New York

    Google Scholar 

  • Wiegel J (1994) Acetate and the potential of homoacetogenic bacteria for industrial applications. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 484–504

    Google Scholar 

  • Wiegel J, Braun M, Gottschalk G (1981) Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr Microbiol 5:255–260

    CAS  Google Scholar 

  • Wilke D (1995) What should and what can biotechnology contribute to chemical bulk production? FEMS Microbiol Rev 16:89–100

    CAS  Google Scholar 

  • Wong HH, Lee SY (1998) Poly(3-hydroxybutyrate) production from whey by high density cultivation of recombinant Escherichia coli. Appl Microbiol Biotechnol 50:30–33

    PubMed  CAS  Google Scholar 

  • Wood HG, Werkman CH (1938) The utilization of CO2 by the propionic acid bacteria. Biochem J 32:1262–1271

    PubMed  CAS  Google Scholar 

  • Wood HG, Werkman CH (1940) The relationship of bacterial utilization of CO2 to succinic acid formation. Biochem J 34:129–138

    PubMed  CAS  Google Scholar 

  • Xavier AMRB, Gonsalvas LMD, Moreira JL (1995) Operation patterns affecting lactic acid production in ultrafiltration cell recycle bioreactor. Biotechnol Bioeng 45:320–327

    PubMed  CAS  Google Scholar 

  • Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuchi Y (1995) Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. nov., Ralstonia salanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. Microbiol Immunol 39:897–904

    PubMed  CAS  Google Scholar 

  • Yamada K (1977) Recent advances in industrial fermentation in Japan. Biotech Bioeng 19:1563–1621

    CAS  Google Scholar 

  • Yamamoto I, Saiki T, Liu S-M, Ljungdahl LG (1983) Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. J Biol Chem 258:1826–1832

    PubMed  CAS  Google Scholar 

  • Yang ST, Jin ZW, Chollar BH (1997) Production of low-cost acetate deicers from biomass and industrial wastes. Snow Removal and Ice Control Technology Transportation Research Board, National Research Council, Washington, DC, pp 60–69

    Google Scholar 

  • Yang ST, Huang YL, Jin Z, Huang Y, Zhu H, Qin W (1999) Calcium magnesium acetate at power-production cost: production of CMA deicer from cheese whey. US DOT Publication No. FHWA-RD-98-174

    Google Scholar 

  • Yasui Y (1958) Process for continuous production of vinegar. Japanese Patent 244,905 Publication No. Sho. 33–3798/1958

    Google Scholar 

  • Zachariou M, Scopes RK (1986) Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production. J Bacteriol 167:863–869

    PubMed  CAS  Google Scholar 

  • Zeikus JG (1980) Chemical and fuel production by anaerobic bacteria. Ann Rev Microbiol 34:423–464

    CAS  Google Scholar 

  • Zeikus JG, Jain MK, Elankoven P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51:545–552

    CAS  Google Scholar 

  • Zhang DX, Cheryan M (1994) Starch to lactic acid in a continuous membrane reactor. Process Biochem 29(2):145–150

    Google Scholar 

  • Zhang H, Obias V, Gonyer K, Dennis D (1994) Production of polyhydroxyalkanoates in sucrose-utilizing recombinant Escherichia coli and Klebsiella strains. Appl Environ Microbiol 60:1198–1205

    PubMed  CAS  Google Scholar 

  • Ziffer JA, Gaffney S, Rothenberg S, Cairney TJ (1971) Aldonic acid and aldonate compositions and production thereof. British Patent 1,249,347. Chem Abstr 79:113

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Rogers∗, P., Chen, JS., Zidwick, M.J. (2013). Organic Acid and Solvent Production: Acetic, Lactic, Gluconic, Succinic, and Polyhydroxyalkanoic Acids. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31331-8_23

Download citation

Publish with us

Policies and ethics