Organic Acid and Solvent Production: Acetic, Lactic, Gluconic, Succinic, and Polyhydroxyalkanoic Acids

  • Palmer Rogers∗
  • Jiann-Shin Chen
  • Mary Jo Zidwick


The objective of this chapter is to present the ways bacteria are effectively harnessed as biocatalysts to perform the synthesis of bulk organic acids and solvents. Prior to the development of the petroleum-based chemical industry, microbial fermentations of agricultural biomass were a major source of a number of useful bulk organic chemicals. Commercial chemical production often emerged from a much earlier food-processing technology where grains, corns, milks, and fruits were fermented to wines, beers, cheeses, and vinegars. Beginning at the end of the nineteenth century and continuing to the present, specific bacterial strains were selected from nature to produce commercially needed bulk chemicals such as lactic acid, acetic acid, acetone and butanol, and more recently gluconic acid and polyhydroxyalkanoates. Lactic acid currently is produced at very large volumes for a multitude of food and industrial uses. Using the tools of metabolic engineering, bacterial strains are being altered for production of propanediols, butanediol, and succinic acid at higher yields and productivity than are possible using natural strains.


  1. Adamse AD (1980) New isolation of Clostridium aceticum, (Wieringa). Ant v Leeuwenhoek 46:523–531Google Scholar
  2. Agreda VH, Zoeller JR (1993) Acetic acid and its derivatives. Dekker, New YorkGoogle Scholar
  3. Ahn WK, Park SJ, Lee SY (2000) Production of poly(3-hydroxybutyrate) by fed-batch culture of recombinant Escherichia coli with a highly concentrated whey solution. Appl Environ Microbiol 66:3624–3627PubMedGoogle Scholar
  4. Ahn WS, Park SJ, Lee SY (2001) Production of poly(3-hydroxybutyrate) from whey by cell recycle fed-batch culture of recombinant Escherichia coli. Biotechnol Lett 23:235–240Google Scholar
  5. Albertsson A-C, Marchessault RH (1994) Governmental policy, regulations and standards. In: Doi Y, Fukuda K (eds) Biodegradable plastics and polymers. Elsevier Science, Amsterdam, pp 313–318Google Scholar
  6. Allgeier RJ, Hildebrandt FM (1960) Developments in vinegar manufacture. Adv Appl Microbiol 8:163–182Google Scholar
  7. Alpers J (1999) Engineering metabolism for commercial gains. Science 283:1625–1626Google Scholar
  8. Althouse JW, Tavlarides LL (1992) Analysis of organic extractant systems for acetic acid removal for calcium magnesium acetate production. Ind Eng Chem Res 31:1971–1981Google Scholar
  9. Aminabhavi TM, Balundgi RH (1990) A review of biodegradable plastics. Polym Plast Technol Eng 29:235–262Google Scholar
  10. Anastassiadis S, Aivasidis A, Wandrey C (1999) Process for the production of gluconic acid with a strain of Aureobasidium pullulans (deBray) Arnaud. US Patent 5692286Google Scholar
  11. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472PubMedGoogle Scholar
  12. Andreesen JR, Gottschalk G, Schlegel HG (1970) Clostridium formicoaceticum nov. spec. isolation description, and distinction from C. aceticum and C. thermoaceticum. Arch Mikrobiol 72:154–174PubMedGoogle Scholar
  13. Andrianova YE, Bakuridze TL, Yargunov VG, Zhurov IV, Vinter VG (1998) Effects of succinate on the growth rates of potato, Rauwolfia, and ginseng in vitro. Prikl Biokhim Mikrobiol 34:435–438Google Scholar
  14. Anonymous (1993) Chem Market Report March 1 7Google Scholar
  15. Anonymous (1999) All-microbial route yields chiral building blocks. Chem Eng News 77(8):57Google Scholar
  16. Anonymous (2000) Chemical prices. Chem Market Report 257(23):26–33Google Scholar
  17. Arihara K, Luchansky JB (1995) Dairy lactobacilli. In: Hui YH, Khachatouriani GG (eds) Food biotechnology: microorganisms. VCH, New York, pp 609–643Google Scholar
  18. Asai T (1968) Acetic acid bacteria: classification and biochemical activities. University Press of Tokyo/University Park Press, Tokyo/BaltimoreGoogle Scholar
  19. Attwood MA, van Dijken JP, Pronk JT (1991) Glucose metabolism and gluconic acid production by Acetobacter diazotrophicus. J Ferm Bioeng 72:101–105Google Scholar
  20. Auvray F, Codderville M, Ritzenthaler P, Dupont L (1997) Plasmid integration in a wide range of bacteria mediated by integrase of Lactobacillus delbrueckii bacteriophage mv4. J Bacteriol 179:1837–1845PubMedGoogle Scholar
  21. Babel W, Iske U, Jechorek M, Miethe D (1987) Method for production of products by fermentation of methanol. German Patent GDR 251,571. Chem Abstr 109:36639Google Scholar
  22. Babel W, Mueller R, Miethe D, Iske U (1988) Continuous microbial synthesis of products of incomplete oxidation, such as gluconic acid. German Patent DD 253,836. Chem Abstr 109:108918Google Scholar
  23. Babel W, Miethe D, Iske U, Sattler K, Richter HP, Schmidt J, Babel W, Lofhagen N, Miethe D, Mueller R, Iske U, Jechorek M, Dueresch R (1991) Microbial manufacture of gluconic acid. German Patent DD 293, 135. Chem Abstr 115:278185Google Scholar
  24. Bahner B (1994) Chemical marketing reporter. March 21st 14Google Scholar
  25. Balch WE, Schoberth S, Tanner RS, Wolfe RS (1977) Acetobacterium, a new genus of hydrogen-oxidizing carbon dioxide-reducing, anaerobic bacteria. Int J Syst Bacteriol 27:355–361Google Scholar
  26. Barnard GN, Sanders JKM (1989) The poly-β-hydroxybutyrate granule in vivo: a new insight based on NMR spectroscopy of whole cells. J Biol Chem 264:3286–3291PubMedGoogle Scholar
  27. Basu R, Bershears JS, Clausen EC (1999) Calcium magnesium acetate at lower production costs: production of CMA deicer from biomass. US DOT Publication No. FHWA-RD-98-055Google Scholar
  28. Benninga H (1990) A history of lactic acid making. Kluwer Academic, Dordrecht/BostonGoogle Scholar
  29. Beppu T (1993) Genetic organization of acetobacter for acetic acid fermentation. Ant v Leeuwenhoek 64:121–135Google Scholar
  30. Berglund KA, Elankovan P, Glassner DA (1991) Carboxylic acid purification and crystallization process. US Patent 5,034,105Google Scholar
  31. Berglund KA, Yedur S, Dunuwila DD (1999) Succinic acid production and purification. US Patent 5,958,744Google Scholar
  32. Bernhauer K (1924) Zum Problem der Säurebildung durch A. niger Biochem. Z. 153:517–521Google Scholar
  33. Bernhauer K (1928) Über die Characterisierung der Stämme von A. niger auf Grund ihres biochemischen Verhaltens Biochem.Z 197:278–287Google Scholar
  34. Bhowmik T, Steele JL (1994) Cloning, characterization, and insertional inactivation of Lactobacillus helveticus D(−)-lactate dehydrogenase. Appl Microbiol Biotechnol 41:432–439PubMedGoogle Scholar
  35. Bigelis R, Tsai SP (1995) Microorganisms for organic acid production. In: Hui YH, Khachatourians GG (eds) Food biotechnology: microorganisms. VCH, New York, pp 239–280Google Scholar
  36. Blom RH, Pfeiffer VF, Moyer AJ, Traufler DH, Conway HF, Crocker CK, Farison RE, Hannibal DV (1952) Sodium gluconate production-fermentation with A. niger. Ind Eng Chem 44:435–440Google Scholar
  37. Bock A, Sawers G (1996) “Fermentation” in Escherichia coli and Salmonella. In: Neidhardt FC (ed) Cellular and molecular biology. ASM Press, Washington, pp 262–282Google Scholar
  38. Boutroux L (1880) Sur une fermentation nouvelle du glucose. CR Acad Sci 91:236–238Google Scholar
  39. Boynton ZL, Koon JJ, Brennan EM, Clouart JD, Horowitz DM, Gerngross TU, Huisman GW (1999) Reduction of cell lysate viscosity during processing of poly(3-hydroxyalkanoates) by chromosomal integration of the Staphylococcal nuclease gene in Pseudomonas putida. Appl Environ Microbiol 65:1524–1529PubMedGoogle Scholar
  40. Braun M, Mayer F, Gottschalk G (1981) Clostridium aceticum (Wieringa) a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch Microbiol 128:288–293PubMedGoogle Scholar
  41. Brown AT, Breeding LC (1980) Carbon dioxide metabolism by Actinomyces viscosus: pathways for succinate and aspartate production. Infect Immun 28:82–91PubMedGoogle Scholar
  42. Bucholz K, Gödelmann B (1978) Macrokinetics and operational stability of immobilized glucose oxidase and catalase. Biotechnol Bioeng 20:1201–1220Google Scholar
  43. Buchta K (1983) Lactic acid. In: Rehm HJ, Reed G (eds) Biotechnology. Verlag Chemie, Weinheim, pp 409–417Google Scholar
  44. Busche RM (1985) Acetic acid manufacture – fermentation alternatives. In: Cherenisinoff PN, Ouellette RP (eds) Biotechnology applications and research technomic. Technomic Lancaster PA, pp 88–102Google Scholar
  45. Busche RM (1991) Extractive fermentation of acetic acid: economic tradeoff between yield of clostridium and concentration of acetobacter. Appl Biochem Biotechnol 28(29):605–621Google Scholar
  46. Byrom D (1992) Production of poly-β-hydroxybutyrate: poly-β-hydroxyvalerate copolymers. FEMS Microbiol Rev 103:247–250Google Scholar
  47. Byrom D (1994) Polyhydroxyalkanoates. In: Mobley DP (ed) Plastics from microbes. Hanser, Munich, pp 5–33Google Scholar
  48. Carr NG (1966) The occurrence of poly-β-hydroxybutyrate in the blue-green alga, Chloroglea fritschii. Biochim Biophys Acta 120:308–310PubMedGoogle Scholar
  49. Cauvin B, Luchansky JB (1992) Advances in electro-transformation of Gram-positive bacteria. Bio-rad Laboratories Bulletin 1350AGoogle Scholar
  50. Chang HN, Kim YC, Lee SY, Kim BS (1994) Current status of biodegradable plastics in Korea: research, commercial production and government policy. In: Doi Y, Fukuda K (eds) Biodegradable plastics and polymers. Elsevier Science, Amsterdam, pp 286–297Google Scholar
  51. Chang D-E, Jung H-C, Rhee J-S, Pan J-G (1999) Homofermentative production of D-or L-lactate in metabolically engineered Escherichia coli RR1. Appl Environ Microbiol 65:1384–1389PubMedGoogle Scholar
  52. Cheng P, Mueller RE, Jaeger S, Bajpai R, Iannotti EL (1991) Lactic acid production from enzyme-thinned corn starch using Lactobacillus amylovorus. J Ind Microbiol 7:27–34Google Scholar
  53. Cheryan M (1999) Acetic acid production. In: Lederberg J (ed) Encyclopedia of microbiology. Academic, San DiegoGoogle Scholar
  54. Cheryan M, Paretkh S, Shah M, Witjitra K (1997) Production of acetic acid by Clostridium thermoaceticum. Adv Appl Microbiol 43:1–33PubMedGoogle Scholar
  55. Chiellini E (1994) Status of government policy, regulation and standards on the issue of biodegradable plastic materials in Italy. In: Doi Y, Fukuda K (eds) Biodegradable plastics and polymers. Elsevier Science, Amsterdam, pp 273–285Google Scholar
  56. Choi J, Lee SY (1997) Process analysis and economic evaluation for poly(3-hydroxybutyrate) production by fermentation. Bioproc Eng 17:335–342Google Scholar
  57. Choi J, Lee SY (1999a) Efficient and economical recovery of poly(3-hydroxybutyrate) from recombinant Escherichia coli by simple digestion with chemicals. Biotechnol Bioeng 62:546–553PubMedGoogle Scholar
  58. Choi J, Lee SY (1999b) High-level production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by fed-batch culture of recombinant Escherichia coli. Appl Environ Microbiol 65:4363–4368PubMedGoogle Scholar
  59. Choi J, Lee SY (2000) Economic consideration in the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by bacterial fermentation. Appl Microbiol Biotechnol 53:646–649PubMedGoogle Scholar
  60. Chun VH, Rogers PL (1988) The simultaneous production of sorbitol from fructose and gluconic acid from glucose using an oxidoreductase of Zymomonas mobilis. Appl Microbiol Biotechnol 29:19–24Google Scholar
  61. Clark DP (1989) The fermentation pathways of Escherichia coli. FEMS Microbiol Rev 63:223–234Google Scholar
  62. Clark DP, Cunningham PR, Reams SG, Mat-Jan F, Mohammedkhani R, Williams CR (1988) Mutants of Escherichia coli defective in acid fermentation. Appl Biochem Biotechnol 17:163–173PubMedGoogle Scholar
  63. Cocconcelli PS, Gasson MJ, Morelli L, Bottazzi V (1991) Single-stranded DNA plasmid vector construction and cloning of Bacillus stearothermophilus α-amylase in Lactobacillus. Res Microbial 142:643–652Google Scholar
  64. Crow VL (1987) Citrate cycle intermediates in the metabolism of aspartate and lactate by Propionibacterium freudenreichii subsp. shermanii. Appl Environ Microbiol 53:2600–2602PubMedGoogle Scholar
  65. Currie JN, Finlay A (1933) Fermentation such as the production of D-gluconic acid. US Patent 1908225. Chem Abstr 27:3774Google Scholar
  66. Currie JN, Carter RH (Charles Pfizer, and Co.). (1930) Gluconic acid. US Patent 1896811. Chem Abstr 27:2757Google Scholar
  67. Datta R (1989) Recovery and purification of lactate salts from whole fermentation broth by electrodialysis. US Patent to Michigan Biotech Institute 4,885,247Google Scholar
  68. Datta R (1992) Process for the production of succinic acid by anaerobic fermentation. US Patent 5,143,833Google Scholar
  69. Datta R, Glassner DA, Jain MK, Vick Roy JR (1992) Fermentation and purification process for succinic acid. US Patent 5,168,055Google Scholar
  70. Datta R, Tsai S-P, Bonsignore P, Moon S-H, Frank JR (1995) Technological and economic potential of poly (lactic acid) and lactic acid derivatives. FEMS Microbiol Rev 16:221–231Google Scholar
  71. Davidson BE, Llanos RM, Cancilla MR, Redman NC, Hillier AJ (1995) Current research on the genetics of lactic acid production in lactic acid bacteria. Int Dairy J 5:763–784Google Scholar
  72. Dawes EA, Senior PJ (1973) The role and regulation of energy reserve polymers in microorganisms. Adv Microb Physiol 10:135–266PubMedGoogle Scholar
  73. De Koning G, Kellerhals M, van Meurs C, Witholt B (1997) In: Eggink G, Steinbuchel A, Poirer Y, Witholt B (eds) Proceedings of the 1996 international symposium on bacterial polyhydroxyalkanoates. A process for the production of bacterial medium-chain-length poly(R)-3-hydroxyalkanoates: reviewing the status quo. NRC Research Press, Davos, Switzerland, pp 137–142Google Scholar
  74. Demirci A, Pometto AL 3rd (1992) Enhanced production of D(−) lactic acid by mutants of Lactobacillus delbruecki ATCC 9649. J Ind Microbiol 11:23–28Google Scholar
  75. Demirci A, Pometto AL 3rd (1995) Repeated-batch fermentation in biofilm reactors with plastic composite supports for lactic acid production. Appl Microbiol Biotechnol 43:585–589Google Scholar
  76. Dennis D, Kaplan NO (1960) D-and L-lactic acid dehydrogenases in Lactobacillus plantarum. J Biol Chem 235:810–818PubMedGoogle Scholar
  77. DeVos WM, Simons GFM (1994) Gene cloning and expression systems in Lactococci. In: Gasson MJ, DeVos WM (eds) Genetics and biotechnology of lactic acid bacteria. Blackie Academic/Professional Publishers, London/New York, pp 52–105Google Scholar
  78. DeWilt HGJ (1972) Oxidation of glucose to gluconic acid. Ind Eng Chem Prod Res Dev 11:370–378Google Scholar
  79. Djordjevic GM, O'Sullivan DJ, Walker SA, Conkling MA, Kaenhammer TR (1997) Triggered-suicide system designed for bacteriophage defense of Lactococcus lactis. J Bacteriol 179:6741–6748PubMedGoogle Scholar
  80. Doi Y (1990) Microbial polyesters. VCH, New YorkGoogle Scholar
  81. Doi Y, Fukuda K (eds) (1994) Biodegradable plastics and polymers. Elsevier Science, AmsterdamGoogle Scholar
  82. Doi Y, Segawa A, Kawaguchi Y, Kunioka M (1990) Cyclic nature of poly(3-hydroxyalkanoate) metabolism in Alcaligenes eutrophus. FEMS Microbiol Lett 67:165Google Scholar
  83. Donnelly MI, Millard CS, Clark DP, Chen MJ, Rathke JW (1998a) A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, and ethanol. Appl Biochem Biotechnol 70–72:187–198Google Scholar
  84. Donnelly M, Millard CS, Stols L (1998b) Mutant E. coli strain with increased succinic acid production. US Patent 5,770,435Google Scholar
  85. Drake HL (1994) Acetogenesis, acetogenic bacteria, and the acetyl-CoA “Wood/Ljungdahl” pathway: past and current perspectives. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 3–60Google Scholar
  86. Dubos RJ (1988) Pasteur and modern science. Science Tech, MadisonGoogle Scholar
  87. Ebner H (1985) Process for the production of vinegar with more than 12g/100ml acetic acid. US Patent 4,503,078Google Scholar
  88. Ebner H, Follmann H (1983) Acetic acid. In: Rehm HJ, Reed G (eds) Biotechnology, vol 3. VCH, Weinheim, pp 387–407Google Scholar
  89. Ebner H, Sellmer S, Follmann H (1996) Acetic acid. In: Roehr M (ed) Biotechnology, 2E, vol 6, Products of Primary Metabolism. VCH Weinheim, Germany, vol 6, pp 381–401Google Scholar
  90. Eden G, Fuchs G (1982) Total synthesis of acetyl CoA involved in autotrophic CO2 fixation in Acetobacterium woodii. Arch Microbiol 133:66–74Google Scholar
  91. Eden G, Fuchs G (1983) Autotrophic CO2 fixation in Acetobacterium woodii. II: demonstration of enzymes involved. Arch Microbiol 135:68–73Google Scholar
  92. Entani E, Ohmori S, Masai H, Suzuki K-I (1985) Acetobacter polyoxogenes, sp. nov., a new species of an acetic acid bacterium useful for producing vinegar with high acidity. J Gen Appl Microbiol 31:475–490Google Scholar
  93. Evans JD, Martin SA (1997) Factors affecting lactate and malate utilization by Selenomonas ruminantium. Appl Environ Microbiol 63:4853–4858PubMedGoogle Scholar
  94. Fiedler S, Steinbüchel A, Rehm B (2000) PhaGe-mediated synthesis of poly(3-hydroxyalkanoates) consisting of medium-chain-length constituents from nonrelated carbon sources in recombinant Pseudomonas fragi. Appl Environ Microbiol 66:2117–2124PubMedGoogle Scholar
  95. Flores-Encarnacion M, Contreras-Zentella M (1999) The respiratory system and diazotrophic activity of Acetobacter diazotrophicus PAL5. J Bacteriol 181:6987–6995PubMedGoogle Scholar
  96. Fontaine F, Peterson WH, McCoy E, Johnson MJ, Ritter G (1942) A new type of glucose fermentation by Clostridium thermoaceticum, n. sp. J Bacteriol 43:701–715PubMedGoogle Scholar
  97. Forde A, Daly C, Fitzgerald GF (1999) Identification of four phage resistance plasmids from Lactococcus lactis subsp. cremoris HO2. Appl Environ Microbiol 65:1540–1547PubMedGoogle Scholar
  98. Fujimaki T (1998) Processability and properties of aliphatic polyesters, “BIONELLE”, synthesized by polycondensation reaction. Polym Degrad Stabil 59:209–214Google Scholar
  99. Fukaya M, Tagami H, Tayama K, Okumura H, Kawamura Y, Beppu T (1989) Spheroplast fusion of Acetobacter aceti and its application to the breeding of strains for vinegar production. Agric Biol Chem 53:2435–2440Google Scholar
  100. Fukaya M, Park YS, Toda K (1992) Improvement of acetic acid fermentation by molecular breeding. J Appl Bacteriol 73:447–454Google Scholar
  101. Gasson MJ, DeVos WM (eds) (1994) genetics and biotechnology of lactic acid bacteria. Blackie Academic/Professional Publishers, London/New YorkGoogle Scholar
  102. Gerngross TU (1999) Can biotechnology move us toward a sustainable society? Nat Biotechnol 17:541–544PubMedGoogle Scholar
  103. Gerngross TU, Martin DP (1995) Enzyme-catalyzed synthesis of poly[R-(-)-3-hydroxybutyrate]: formation of macroscopic granules in vitro. Proc Natl Acad Sci USA 92:6279–6283PubMedGoogle Scholar
  104. Ghose TK, Bhadra A (1985) Acetic acid. In: Moo-Young M (ed) Biotechnology, vol 3. Pergamon Press, New York, pp 701–729Google Scholar
  105. Gilles M, Kerstens K, Hoste B, Janssens D, Kroppenstedt RM, Stephens MP, Teixeira KRS, Dobereiner J, DeLey J (1989) Acetobacter diazotrophicus sp. nov. a nitrogen-fixing acetic acid bacterium associated with sugar cane. Int J Syst Bacteriol 39:361–364Google Scholar
  106. Glassner DA, Datta R (1992) Process for the production and purification of succinic acid. US Patent 5,143, 834Google Scholar
  107. Gokarn RR, Eiteman MA, Martin SA, Eriksson KEL (1997a) Production of succinate from glucose, cellobiose, and various cellulosic materials by the ruminal anaerobic bacteria Fibrobacter succinogenes and Ruminococcus flavefaciens. Appl Biochem Biotechnol 68:69–80PubMedGoogle Scholar
  108. Gokarn RR, Eiteman MA, Sridhar J (1997b) Production of succinate by anaerobic microorganisms. Am Chem Soc Symp Ser 666:237–253Google Scholar
  109. Gokarn RR, Eiteman MA, Altman E (1998) Expression of pyruvate carboxylase enhances succinate production in Escherichia coli without affecting glucose uptake. Biotechnol Lett 20:795–798Google Scholar
  110. Gokarn RR, Eiteman MA, Altman E (1999) Pyruvate carboxylase overexpression for enhanced production of oxalacetate-derived biochemicals in microbial cells. PCT International Patent Application WO 99/53035Google Scholar
  111. Goldberg I, Lonberg-Holm K, Bagley EA, Stieglitz B (1983) Improved conversion of fumarate to succinate by Escherichia coli strains amplified for fumarate reductase. Appl Env Microbiol 45:1838–1847Google Scholar
  112. Gosalbes MJ, Esteban CD, Galan JL, Perez-Martinez G (2000) Integrative food-grade expression system based on the lactose regulon of Lactobacillus casei. Appl Environ Microbiol 66:4822–4828PubMedGoogle Scholar
  113. Gottschalk G (1985) Bacterial metabolism, 2nd edn. Springe, New York, p 247Google Scholar
  114. Gottschalk G (1986) Bacterial metabolism, 2nd edn. Springer, New York, pp 97–98Google Scholar
  115. Gruber PR, Hall ES, Kolstad JJ, Iwen ML, Benson RD, Borchardt RL (1992) Continuous process for manufacture of lactide polymers with controlled optical purity. US Patent to Cargill, Inc 5,142,0023Google Scholar
  116. Gruber PR, Hall ES, Kolstad JJ, Iwen ML, Benson RD, Borchardt RL (1994) Continuous process for manufacture of lactide polymers with purification by distillation. US Patent to Cargill, Inc 5,357,035Google Scholar
  117. Guettler MV, Jain MK (1996) Method for making succinic acid, Anaerobiospirillum succiniciproducens variants for use in process and methods for obtaining variants. US Patent 5,521,075Google Scholar
  118. Guettler MV, Jain MK, Rumler D (1996a) Method for making succinic acid, bacterial variants for use in the process, and methods for obtaining variants. US Patent 5,573, 931Google Scholar
  119. Guettler MV, Jain MK, Soni BK (1996b) Process for making succinic acid, microorganisms for use in the process and methods of obtaining the microorganisms. US Patent 5,504,004Google Scholar
  120. Guettler MV, Jain MK, Soni BK (1998) Process for making succinic acid, microorganisms for use in the process and methods of obtaining the microorganisms. US Patent 5,723,322Google Scholar
  121. Guettler MV, Rumler D, Jain MK (1999) Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. Int J Syst Bacteriol 49:207–216PubMedGoogle Scholar
  122. Gupta A, Verma V, Quazi GN (1997) Transposon induced mutation in Gluconobacter oxydans with special reference to its direct glucose oxidation metabolism. FEMS Microbiol Lett 147:181–188PubMedGoogle Scholar
  123. Gupta A, Felder M, Yerma Y, Cullum J, Qazi GN (1999) A mutant of Gluconobacter oxydans deficient in gluconic acid dehydrogenase. FEMS Microbiol Lett 179:501–506PubMedGoogle Scholar
  124. Hahn JJ, Eschenlauer AC, Narrol MH, Somers DA, Sriene F (1997) Growth kinetics, nutrient uptake, and expression of the Alcaligenes eutrophus poly(β-hydroxybutyrate) synthesis pathway in transgenic maize cell suspension cultures. Biotechnol Prog 13:347–354PubMedGoogle Scholar
  125. Han IS, Cheryan M (1996) Downstream processing of acetate fermentation broths by nanofiltration. Appl Biochem Biotechnol 57(58):19–28Google Scholar
  126. Harlander SK (1987) Transformation of Streptococcus lactis by electroporation. In: Ferretti J, Curtiss R (eds) Streptococcal genetics. American Society for Microbiology, Washington, pp 229–233Google Scholar
  127. Haywood GW, Anderson AJ, Chu L, Dawes EA (1988) The role of NADH-and NADPH-linked acetoacetyl-CoA reductases in the poly-3-hydroxybutyrate synthesizing organism Alcaligenes eutrophus. FEMS Microbiol Lett 52:259–264Google Scholar
  128. Hein S, Tran H, Steinbüchel A (1998) Synechocystis sp. PCC6803 possesses a two-component polyhydroxyalkanoic acid synthase similar to that of anoxygenic purple sulfur bacteria. Arch Microbiol 170:162–170PubMedGoogle Scholar
  129. Herrick HT, May OE (1928) The production of gluconic acid by the Penicillium luteum purpurogenum group II: some optimal conditions for acid formation. J Biol Chem 77:185–195Google Scholar
  130. Hlasiwetz H, Habermann J (1870) Zur Kenntnis einiger Zuckerarten (Glucose, Rhorzucker, Levulose, Sorbin, Phloroglucin). Ann Chem Pharm 155:128–144Google Scholar
  131. Ho K-LG, Pometto AL 3rd, Hinz PN (1997) Optimization of L-(+)-lactic acid production by ring and disc plastic composite supports through repeated-batch biofilm fermentation. Appl Environ Microbiol 63:2533–2542PubMedGoogle Scholar
  132. Hocking PJ, Marchessault RH (1994) Biopolymers. In: Griffin GJL (ed) Chemistry and technology of biodegradable polymers. Chapman and Hall, London, pp 48–96Google Scholar
  133. Holten CM, Muller A, Rehbinder D (eds) (1971) Lactic acid. Weinheim/Bergstr GermanyGoogle Scholar
  134. Howaldt M, Gottlob A, Kulba KD, Chmiel H (1988) Simultaneous conversion of glucose/fructose mixtures in a membrane reactor. Ann NY Acad Sci 542:400–405Google Scholar
  135. Howaldt M, Kulbe KD, Chmiel H (1990) A continuous enzyme membrane reactor retaining native nicotinamide cofactor NAD (H). Ann NY Acad Sci 589:253–260Google Scholar
  136. Hrabak O (1992) Industrial production of poly-β-hydroxybutyrate. FEMS Microbiol Rev 103:251–256Google Scholar
  137. Hromatka O, Ebner H (1949) Investigations on vinegar fermentation: generator for vinegar fermentation and aeration procedures. Enzymologia 13:369Google Scholar
  138. Huang Y, Yang ST (1998) Acetate production from whey lactose using co-immobilized cells of homolactic and homoacetic bacteria in a fibrous-bed bioreactor. Biotechnol Bioeng 60:498–507PubMedGoogle Scholar
  139. Huang YL, Mann K, Mavak JM (1998) Acetic acid production from fructose by Clostridium formicaceticum immobilized in a fibrous bed bioreactor. Biotechnol Prog 14:800–806Google Scholar
  140. Inskeep GC, Taylor GG, Breitzke WC (1952) Lactic acid from corn sugar. Ind Eng Chem 44:1955–1966Google Scholar
  141. Isbell HS, Frush HL, Bates FJ (1932) Manufacture of calcium gluconate by electrolytic oxidation of glucose. Ind Eng Chem 24:375–378Google Scholar
  142. Ishizaki A, Taga N, Takeshita T, Sugimoto T, Tsuge T, Tanaka K (1997) Microbial production of biodegradable plastics from carbon dioxide and agricultural waste material. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass. American Chemical Society, Washington, DC, pp 295–306Google Scholar
  143. Iversen T-G, Standal R, Pederson T, Caucheron DH (1994) IS 1032 from Acetobacter xylinum, a new mobile insertion sequence. Plasmid 32:46–54PubMedGoogle Scholar
  144. Jabalquinto AM, Laivenieks M, Zeikus JG, Cardemil E (1999) Characterization of the oxaloacetate decarboxylase and pyruvate kinase-like activities of Saccharomyces cerevisiae and Anaerobiospirillum succiniciproducens phosphoenolpyruvate carboxykinases. J Prot Chem 18:659–664Google Scholar
  145. Jarvis L (2001) Lactic acid outlook up as polylactide nears market. Chem Mark Repor 259(9) 5, 14Google Scholar
  146. Jendrossek D, Backhaus M, Andermann M (1995) Characterization of the Comamonas sp. poly(3-hydroxybutyrate) (PHB) depolymerase and of its structural gene. Can J Microbiol 41:160–169PubMedGoogle Scholar
  147. Jendrossek D, Schirmer A, Schlegel HG (1996) Biodegradation of polyhydroxyalkanoic acids. Appl Microbiol Biotechnol 46:451–463PubMedGoogle Scholar
  148. John ME, Keller G (1996) Metabolic pathway engineering in cotton: biosynthesis of polyhydroxybutyrate in fiber cells. Proc Natl Acad Sci USA 93:12768–12773PubMedGoogle Scholar
  149. Jones RP, Greenfield P (1982) Effect of carbon dioxide on yeast growth and fermentation. Enz Microbiol Technol 4:210–223Google Scholar
  150. Jossek R, Steinbüchel A (1998) In vitro synthesis of poly-(3-hydroxybutyric acid) by using an enzymatic coenzyme A recycling system. FEMS Microbiol Lett 168:319–324PubMedGoogle Scholar
  151. Kandler O, Weiss N (1986) In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore, pp 1208–1234,
  152. Kaneuchi C, Seki M, Komagata K (1988) Production of succinic acid from citric acid and related acids by Lactobacillus strains. Appl Environ Microbiol 54:3053–3056PubMedGoogle Scholar
  153. Kansiz M, Billman-Jacobe H, McNaughton D (2000) Quantitative determination of the biodegradable polymer poly(β-hydroxybutyrate) in a recombinant Escherichia coli strain by use of mid-infrared spectroscopy and multivariative statistics. Appl Environ Microbiol 66:3415–3420PubMedGoogle Scholar
  154. Kawaguchi Y, Doi Y (1990) Structure of native poly(3-hydroxybutyrate) granules characterized by X-ray diffraction. FEMS Microbiol Lett 70:151–156Google Scholar
  155. Kawaguchi Y, Doi Y (1992) Kinetics and mechanism of synthesis and degradation of poly(3-hydroxybutyrate) in Alcaligenes eutrophus. Macromolecules 25:2324–2329Google Scholar
  156. Kennedy JF, Humphreys JD, Barker SA, Greenshields RN (1980) Application of living immobilized cells to the acceleration of the continuous conversions of ethanol (wort) to acetic acid (vinegar) by hydrous titanium (IV) oxide-immobilized Acetobacter species. Enz Microbiol Technol 2:209–216Google Scholar
  157. Kim DM, Kim HS (1992) Continuous production of gluconic acid and sorbitol from Jerusalem artichoke and glucose using an oxido reductase from Zymomonas mobilis and inulinase. Biotechnol Bioeng 39:336–342PubMedGoogle Scholar
  158. Kim BS, Lee SY, Chang HN (1992) Production of poly-beta-hydroxybutyrate by fed-batch culture of recombinant Escherichia coli. Biotechnol Lett 14:811–816Google Scholar
  159. Kim BS, Lee SC, Lee SY, Chang HN, Chang YK, Woo SI (1994) Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol Bioeng 43:892–898PubMedGoogle Scholar
  160. Kim SW, Kim P, Lee HS, Kim JH (1996) High production of poly-beta-hydroxybutyrate (PHB) from Methylobacterium organophilum under potassium limitation. Biotechnol Lett 18:25–30Google Scholar
  161. Kim GJ, Lee IY, Yoon SC, Shih YC, Park YH (1997) Enhanced yield and a high production of medium-chain-length poly(3-hydroxyalkanoates) in a two-step fed-batch cultivation of Pseudomonas putida by combined use of glucose and octanoate. Enz Microb Technol 20:500–505Google Scholar
  162. Kirschner EM (1996) Growth of top 50 chemicals slowed from very high 1994 rate. Chem Eng News 74(15):16–19Google Scholar
  163. Klaenhammer TR, Fitzgerald GF (1994) Bacteriophages and bacteriophage resistance. In: Gasson MJ, DeVos WM (eds) Genetics and biotechnology of lactic acid bacteria. Blackie Academic/Professional Publishers, London/New York, pp 106–168Google Scholar
  164. Klinke S, de Roo G, Witholt B, Kessler B (2000) Role of phaD in accumulation of medium-chain-length poly(3-hydroxyalkanoates) in Pseudomonas oleovorans. Appl Environ Microbiol 66:3705–3710PubMedGoogle Scholar
  165. Knauf HJ, Vogel RF, Hammes WP (1992) Cloning, sequence, and phenotypic expression of KatA which encodes the catalase of Lactobacillus sake LTH677. Appl Environ Microbiol 58:832–839PubMedGoogle Scholar
  166. Kok J, DeVos JM (1994) The proteolytic system of lactic acid bacteria. In: Gasson MJ, DeVos WM (eds) Genetics and biotechnology of lactic acid bacteria. Blackie Academic/Professional Publishers, London, New York, pp 169–210Google Scholar
  167. Kondo K, Horinouchi S (1997) A new insertion sequence IS 1452 from Acetobacter pasteurianus. Microbiology 143:539–546PubMedGoogle Scholar
  168. Kosaric N (1996) Ethanol-potential source of energy and chemical products. In: Rehm HJ, Reed G (eds) Biotechnology, vol 6. VCH, New York, pp 123–203Google Scholar
  169. Kutzing FT (1837) Prakt Chem J 11:385Google Scholar
  170. Kwon YJ, Kaol R, Mattiasson B (1996) Extractive lactic acid fermentation in poly (ethyleneimine)-based aqueous two-phase system. Biotechnol Bioeng 50:280–290PubMedGoogle Scholar
  171. Laivenieks M, Vielle C, Zeikus JG (1997) Cloning, sequencing, and overexpression of the Anaerobiospirillum succiniciproducens phosphoenolpyruvate carboxykinase (pckA) gene. Appl Env Microbiol 63:2272–2280Google Scholar
  172. Landucci R, Goodman B, Wyman C (1994) Methodology for evaluating the economics of biologically producing chemicals and materials from alternative feedstocks. Appl Biochem Biotechnol 45/46:677–696Google Scholar
  173. Layman P (1998) Acetic acid industry gears up for possible building boom. Chem Eng News 76(31):17–18Google Scholar
  174. Leaf TA, Peterson MS, Stoup SK, Somers D, Srienc F (1996) Saccharomyces cerevisiae expressing bacterial polyhydroxybutyrate synthase produces poly-3-hydroxybutyrate. Microbiol 142:1169–1180Google Scholar
  175. Lee SY (1996a) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14PubMedGoogle Scholar
  176. Lee SY (1996b) Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol 14:431–438Google Scholar
  177. Lee SY (1997) E. coli moves into the plastic age. Nat Biotechnol 15:17–18PubMedGoogle Scholar
  178. Lee SY, Chang HN (1995a) Production of poly(hydroxyalkanoic acid). Adv Biochem Eng Biotechnol 52:27–58PubMedGoogle Scholar
  179. Lee SY, Chang HN (1995b) Production of poly(3-hydroxybutyric acid) by recombinant Escherichia coli strains: genetic and fermentation studies. Can J Microbiol 41(Suppl 1):207–215PubMedGoogle Scholar
  180. Lee SY, Lee YK, Chang HN (1995) Stimulatory effects of amino acids and oleic acid on poly(3-hydroxybutyric acid) synthesis by recombinant Escherichia coli. J Ferment Bioeng 79:177–180Google Scholar
  181. Lee IY, Kim MK, Park YH, Lee SY (1996) Regulatory effects of cellular nicotinamide nucleotides and enzyme activities on poly(3-hydroxybutyrate) synthesis in recombinant Escherichia coli. Biotechnol Bioeng 52:707–712PubMedGoogle Scholar
  182. Lee PC, Lee WG, Kwon S, Lee SY, Chang HN (1999a) Succinic acid production by Anaerobiospirillum succiniciproducens: effects of the H2/CO2 supply and glucose concentration. Enz Microbiol Technol 24:549–554Google Scholar
  183. Lee PC, Lee WG, Lee SY, Chang HN (1999b) Effects of medium components on the growth of Anaerobiospirillum succiniciproducens and succinic acid production. Proc Biochem 35:49–55Google Scholar
  184. Lee SY, Lee Y, Wang FL (1999c) Chiral compounds from bacterial polyesters: sugars to plastics to fine chemicals. Biotechnol Bioeng 65:363–368PubMedGoogle Scholar
  185. Leh MB, Charles M (1989) The effect of whey protein hydrolyzate average molecular weight on the lactic acid fermentation. J Ind Microbiol 4:77–80Google Scholar
  186. Leigh JA, Mayer F, Wolfe RS (1981) Acetogenium kivui a new thermophilic hydrogen-oxidizing, acetogenic bacterium. Arch Microbiol 129:275–280Google Scholar
  187. Lemoigne M (1925) Etudes sur l'autolyze microbienne acidification par formation d'acide β-oxybutyrique. Ann Inst Pasteur 39:144–173Google Scholar
  188. Lemoigne M (1926) Produits de déshydration et de polymérisation de l'acide β-oxybutyrique. Bull Soc Chim Biol 8:770–782Google Scholar
  189. Lemoigne M, Girard H (1943) Réserves lipidiques β-hydroxybutyriques chez Azotobacter chroococcum. Comp Rend Acad Sci 217:557–558Google Scholar
  190. Liebergesell M, Hustede E, Timm A, Steinbüchel A, Fuller RC, Lenz RW, Schlegel HG (1991) Formation of poly(3-hydroxyalkanoates) by phototrophic and chemolithotrophic bacteria. Arch Microbiol 155:415–421Google Scholar
  191. Lin RW, Atkinson EE, Balhoff DE (1996) Process for producing (S,S)-ethylenediamine-N,N′-disuccinic acid. US Patent 5554791Google Scholar
  192. Lin M-Y, Harlander S, Saviano D (1999) Construction of an integrative food-grade cloning vector for Lactobacillus acidophilus. Appl Microb Biotechnol 45:484–489Google Scholar
  193. Lipinsky ES, Sinclair RG (1986) Is lactic acid a commodity chemical? Chem Eng Prog 82(8):26–32Google Scholar
  194. Litchfield JH (1996) Microbial production of lactic acid. Adv Appl Microbiol 42:45–95PubMedGoogle Scholar
  195. Liu S-J, Steinbüchel A (2000a) Exploitation of butyrate kinase and phosphotransbutyrylase from Clostridium acetobutylicum for the in vitro biosynthesis of poly(hydroxyalkanoic acid). Appl Microbiol Biotechnol 53:545–552PubMedGoogle Scholar
  196. Liu S-J, Steinbüchel A (2000b) A novel genetically engineered pathway for synthesis of poly(hydroxyalkanoic acids) in Escherichia coli. Appl Environ Microbiol 66:739–743PubMedGoogle Scholar
  197. Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Ann Rev Microbiol 40:415–450Google Scholar
  198. Ljungdahl LG (1994) The acetyl-CoA pathway and the chemiosmotic generation of ATP during acetogenesis. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 63–85Google Scholar
  199. Lockwood LB, Yoder DE, Zienty M (1965) Lactic acid. Ann NY Acad Sci 119:854–867PubMedGoogle Scholar
  200. Loos H, Krämer R, Sahm H, Sprenger GA (1994) Sorbitol promotes growth of Zymomonas mobilis in environment with high concentrations of sugar: evidence for a physiological function of glucose-fructose oxidoreductase in osmoprotection. J Bacteriol 176:7688–7693PubMedGoogle Scholar
  201. Lorowitz WH, Bryant MP (1984) Peptostreptococcus productus strain that grows rapidly with CO as an energy source. Ann Environ Microbiol 47:961–964Google Scholar
  202. Luchansky JB, Muriana PM, Klaenhammer TR (1988) Application of electroporation for transfer of plasmid DNA to Lactobacillus, Lactococcus, Leuconostoc, Listeria, Pediococcus, Bacillus, Staphylococcus, Enterococcus, and Propionibacterium. Molec Microbiol 2:637–646Google Scholar
  203. Luttik MAH, Van Spanning R, Schipper D, Van Dijken JP, Pronk JT (1997) The low biomass yields of the acetic acid bacterium Acetobacter pasteurianus are due to a low stoichiometry of respiration-coupled proton translocation. Appl Environ Microbiol 63:3345–3351PubMedGoogle Scholar
  204. Maddox IS (1996) Microbial production of 2, 3-butanediol. In: Rehm HJ, Reed G (eds) Biotechnology, vol 6, 2nd edn. VCH, New York, pp 270–291Google Scholar
  205. Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Molec Biol Rev 63:21–53Google Scholar
  206. Martin MC, Alonso JC, Suarez JE, Alvarez MA (2000) Generation of food-grade recombinant lactic acid bacterium strains by site-specific recombination. Appl Environ Microbiol 66:2599–2604PubMedGoogle Scholar
  207. Mat-Jan F, Alam KY, Clark DP (1989) Mutants of Escherichia coli deficient in the fermentative lactate dehydrogenase. J Bacteriol 171:342–348PubMedGoogle Scholar
  208. Matsusaki H, Abe H, Taguchi K, Fukui T, Doi Y (2000) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant bacteria expressing the PHA synthase gene phaC1 from Pseudomonas sp. 61-3. Appl Microbiol Biotechnol 53:401–409PubMedGoogle Scholar
  209. Matsushita K, Toyama H, Adachi O (1994) Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol 36:247–301PubMedGoogle Scholar
  210. May OE, Herrick HT, Moyer AJ, Wells PA (1934) Gluconic acid-production by submerged mold growths under increased air pressure. Ind Eng Chem 26:575–578Google Scholar
  211. McCoy M (1998) Biomass ethanol inches forward. Chem Eng News 76:29–32Google Scholar
  212. McGee H (1984) On food and cooking: the science and lore of the kitchen. Scribner, New York, p 36Google Scholar
  213. Mercier P, Yerushalmi L, Rouleau D, Dochain D (1992) Kinetics of lactic acid fermentation on glucose and corn by Lactobacillus amylophilus. J Chem Tech Biotechnol 55:111–121Google Scholar
  214. Mesa MM, Caro I, Cantero D (1996) Viability reduction of Acetobacter aceti due to the absence of oxygen in submerged culture. Biotech Progr 12:709–712Google Scholar
  215. Millard CS, Chao YP, Liao JC, Donnelly MI (1996) Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli. Appl Env Microbiol 62:1808–1810Google Scholar
  216. Milson PE, Meers JL (1985) Gluconic and itaconic acids. In: Moo-Young M (ed) Comprehensive biotechnology, vol 3. Pergamon, Oxford, pp 681–700Google Scholar
  217. Misoph M, Drake HL (1996) Effect of CO2 on the fermentation capacities of the acetogen Peptostreptococcus productus U-1. J Bacteriol 178:3140–3145PubMedGoogle Scholar
  218. Mobley DP (1994) Plastics from microbes. Hanser, MunichGoogle Scholar
  219. Möller B, Ossmer R, Howard BH, Gottschalk G, Hippe H (1984) Sporomusa, a new genus of Gram negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. Arch Microbiol 139:388–396Google Scholar
  220. Molliard M (1922) Survene nouvelle fermentation acide produite par le Sterigmatcystis nigra. CR Hebd Seances Acad Sci 174:881–883Google Scholar
  221. Mori A (1993) Vinegar production in a fluidized-bed reactor with immobilized bacteria. In: Tanaka A, Tosa T, Kobayashi T (eds) Industrial application of immobilized biocatalysts. Dekker, New York, pp 291–313Google Scholar
  222. Mori A, Tervi G (1972) Kinetic studies on submerged acetic acid fermentation. III: efficiency of energy metabolism in acetic acid fermentation using Acetobacter rancens. J Ferment Technol 50:510–517Google Scholar
  223. Moyer AJ, Wells PA, Stubbs JJ, Herrick HT, May OE (1937) Gluconic acid production-development of inoculum and composition of fermentation solution for gluconic acid production by submerged mold growths under increased air pressure. Ind Eng Chem 29:777–781Google Scholar
  224. Müller V, Gottschalk G (1994) The sodium ion cycle in acetogenic and methanogenic bacteria: generation and utilization of a primary electrochemical sodium ion gradient. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 125–156Google Scholar
  225. Muller HM, Seebach D (1993) Poly(hydroxyfettsaureester) eine funfte Klasse von physiologisch bedeutsamen organischen Biopolymeren? Agnew Chem 105:483–459Google Scholar
  226. Muraoka H, Watabe Y, Ogasawara N (1982) Effect of oxygen deficiency on acid production and morphology of bacterial cells in submerged acetic fermentation by Acetobacter aceti. J Ferment Technol 60:171–180Google Scholar
  227. Narayan R (1994) Impact of governmental policies, regulations, and standards activities on an emerging biodegradable plastics industry. In: Doi Y, Fukuda K (eds) Biodegradable plastics and polymers. Elsevier Science, Amsterdam, pp 261–272Google Scholar
  228. Nawrath C, Poirier Y, Somerville C (1994) Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Proc Natl Acad Sci USA 91:12760–12764PubMedGoogle Scholar
  229. Nghiem NP, Davison BH, Thompson JE, Suttle BE, Richardson GR (1996) The effect of biotin on the production of succinic acid by Anaerobiospirillum succiniciproducens. Appl Biochem Biotechnol 57/58:633–638Google Scholar
  230. Nghiem NP, Davison BH, Suttle BE, Richardson GR (1997) Production of succinic acid by Anaerobiospirillum succiniciproducens. Appl Biochem Biotechnol 63–65:565–576PubMedGoogle Scholar
  231. Nghiem NP, Donnelly MI, Millard CS (1999) Method for the production of dicarboxylic acids. US Patent 5,869,301Google Scholar
  232. Nickol GB (1979) Vinegar. In: Peppler HJ, Pearlman D (eds) Microbial technology, vol 2. Academic, New York, pp 155–172Google Scholar
  233. Nidetzky B, Furlinger M, Gollhofer D (1997) Improved operational stability of cell-free glucose-fructose oxidoreductase from Zymomonas mobilis for the efficient synthesis of gluconic acid and sorbitol, in acoutin ultra filtration membrane reactor. Biotechnol Bioeng 53:623–629PubMedGoogle Scholar
  234. Nishioka M, Tuzuki T, Wanajyo Y, Oonami H, Horiuchi T (1994) Biodegradation of Bionolle. Stud Polym Sci 12:584–590Google Scholar
  235. Noury M, van der Lande NV (1962) Process for preparation of gluconic acid monohydrate. British Patent 902609. Chem Abstr 57:13020gGoogle Scholar
  236. Oben JM, Amagro MJ, Manjon A (1996) Continuous retention of native NADP(H) in an enzyme membrane reactor for gluconate and glutamate production. J Biotechnol 50:27–36Google Scholar
  237. Okumura H, Tagami H, Fukaya M, Masai H, Kawamura Y, Horinouchi S, Beppu T (1988) Cloning of the β-isopropylmalate dehydrogenase gene from Acetobacter aceti and its use for construction of a new host vector system for Acetobacter. Agric Biol Chem 52:3125–3129Google Scholar
  238. Olijve W, Kok JJ (1979) Analysis of growth of Gluconobacter oxydans in glucose containing medium. Arch Microbiol 121:283–290Google Scholar
  239. Osuga J, Mori A, Kato J (1984) Acetic acid production by immobilized Acetobacter aceti cells entrapped in a kappa-carrageenan gel. J Ferment Technol 62:139–149Google Scholar
  240. Othmer K (1983) Succinic acid and succinic anhydride. In: Othmer K (ed) Encyclopedia of chemical technology, 3rd edn, vol 21, Wiley, pp 848–864Google Scholar
  241. Page WJ, Cornish A (1993) Growth of Azotobacter vinelandii UWD in fish peptone medium and simplified extraction of poly-beta-hydroxybutyrate. Appl Environ Microbiol 59:4236–4244PubMedGoogle Scholar
  242. Pan JG, SooSA, Park CK, Kim P, Chang DE, Kim JE (1999) A pta ldhA double mutant Escherichia coli SS373 and the method of producing succinic acid therefrom. PCT Application WO 99/06532Google Scholar
  243. Parekh SR, Cheryan M (1991) Production of acetate by mutant strains of Clostridium thermoaceticum. Appl Microbiol Biotechnol 36:384–387Google Scholar
  244. Parekh SR, Cheryan M (1994a) Continuous production of acetate by Clostridium thermoaceticum in a cell-recycle membrane bioreactor. Enz Microb Technol 16:104–109Google Scholar
  245. Parekh SR, Cheryan M (1994b) High concentrations of acetate with a mutant strain of Clostridium thermoaceticum. Biotechnol Lett 16:139–142Google Scholar
  246. Park DH, Zeikus GK (1999) Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J Bacteriol 181:2403–2410PubMedGoogle Scholar
  247. Park YS, Ohtake H, Fukaya M, Okumura H, Kawamura Y, Toda K (1989) Acetic acid production using a fermenter equipped with a hollow fiber filter module. Biotechnol Bioeng 33:918–923PubMedGoogle Scholar
  248. Park YS, Ohtake H, Fukaya M, Kawamura H, Toda K (1991) Production of high concentration of acetic acid by Acetobacter aceti using a repeated fed-batch culture with cell recycling. Appl Microbiol Biotechnol 35:149–153Google Scholar
  249. Parrer G, Schroll G, Gapes JR, Lubitz W, Schuster KC (2000) Conversion of solvent evaporation residues from the AB-(acetone-butanol) bioprocess into bacterial cells accumulating thermoplastic polyesters. J Molec Microbiol Biotechnol 2:81–86Google Scholar
  250. Pasteur L (1868) Etudes sur le vinaigre, sa fabrication se maladres, moyens de les préveair nouvelles observations sur la conservation des vinc par la châleur. Gauthier-Villars, ParisGoogle Scholar
  251. Peoples OP, Sinskey AJ (1987) Biosynthetic thiolase from Zoogloea ramigera III: isolation and characterization of the structural gene. J Biol Chem 262:97–102PubMedGoogle Scholar
  252. Peoples OP, Sinskey AJ (1989) Poly-β-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16: characterization of the genes encoding β-ketothiolase and acetoacetyl-CoA reductase. J Biol Chem 264:15293–15297PubMedGoogle Scholar
  253. Phillips MA (1963) Catalytic hydrogenation of glucose to sorbitol using a highly active catalyst. Br Chem Eng 8(11):767–769Google Scholar
  254. Planas J, Radström P, Tjerneld F, Hahn-Hägerdal B (1996) Enhanced production of lactic acid through the use of a novel aqueous two-phase system as an extractive fermentation system. Appl Microbiol Biotechnol 45:737–743Google Scholar
  255. Podkovyrov SM, Zeikus JG (1993) Purification and characterization of phosphoenolpyruvate carboxykinase, a catabolic CO2-fixing enzyme, from Anaerobiospirillum succiniciproducens. J Gen Microbiol 139:223–228PubMedGoogle Scholar
  256. Poehland HD, Schierz V, Schumann R (1993) Optimization of gluconic acid synthesis by removing limitations and inhibitions. Acta Biotechnol 13:257–268Google Scholar
  257. Poirier Y, Dennis DE, Klomparens K, Somerville C (1992) Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science 256:520–522PubMedGoogle Scholar
  258. Poirier Y, Nawrath C, Somerville C (1995) Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants. Bio/technology 13:142–150PubMedGoogle Scholar
  259. Posno M, Heuvelmans PTHM, van Giezen MJF, Lokman BC, Leer RJ, Pouwels PH (1991) Complimentation of the inability of Lactobacillus strains to utilize D-xylose with D-xylose catabolism-encoding genes of Lactobacillus pentosus. Appl Environ Microbiol 57:2764–2766PubMedGoogle Scholar
  260. Pries A, Steinbüchel A, Schlegel HG (1990) Lactose-utilizing and galactose-utilizing strains of poly(hydroxyalkanoic acid)-accumulating Alcaligenes eutrophus and Pseudomonas saccharophila obtained by recombinant DNA technology. Appl Microbiol Biotechnol 33:410–417Google Scholar
  261. Prieto MA, Buhler B, Jung K, Witholt B, Kessler B (1999a) PhaE, a polyhydroxyalkanoate-granule-associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes. J Bacteriol 181:858–868PubMedGoogle Scholar
  262. Prieto MA, Kellerhals MB, Bozzato GB, Radnovic D, Witholt B, Kessler B (1999b) Engineering of stable recombinant bacteria for production of chiral medium-chain-length poly-3-hydroxyalkanoates. Appl Environ Microbiol 65:3265–3271PubMedGoogle Scholar
  263. Pronk JT, Levering PR, Olijve W, Van Dijken JP (1989) The role of NADP-dependent and quino protein glucose dehydrogenase in gluconic acid production by Gluconobacter oxydans. Enz Microb Technol 11:160–164Google Scholar
  264. Ragsdale SW (1994) CO dehydrogenase and the central role of this enzyme in fixation of carbon-dioxide by anaerobic bacteria. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 88–126Google Scholar
  265. Rehm BHA, Kruger N, Steinbüchel A (1998) A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. J Biol Chem 237:24044–24051Google Scholar
  266. Rehr B, Wilhelm C, Sahm H (1991) The production of sorbitol and gluconic acid by permeabilized cells of Zymomonas mobilis. Appl Microbiol Biotechnol 35:144–148Google Scholar
  267. Reisch MS (1999) Vision 2020 comes into focus. Chem Eng News 77(32):10–12Google Scholar
  268. Ren Q, Sierro N, Kellerhals M, Kessler B, Witholt B (2000) Properties of engineered poly-3-hydroxyalkanoates produced in recombinant Esherichia coli strains. Appl Environ Microbiol 66:1311–1320PubMedGoogle Scholar
  269. Reusch RN (1992) Biological complexes of poly-β-hydroxybutyrate. FEMS Microbiol Rev 103:119–130Google Scholar
  270. Reusch RN, Sadoff HL (1988) Putative structure and functions of a poly-β-hydroxybutyrate/calcium polyphosphate channel in bacterial plasma membranes. Proc Natl Acad Sci USA 85:4176–4180PubMedGoogle Scholar
  271. Reusch RN, Sparrow A (1992) Transport of poly-β-hydroxybutyrate in human plasma. Biochim Biophys Acta 1123:33–40PubMedGoogle Scholar
  272. Ro HS, Kim HS (1991) Continuous production of gluconic acid and sorbitol from sucrose using invertase and an oxidoreductase from Zymomonas mobilis. Enz Microb Technol 13:920–924Google Scholar
  273. Roehr M, Kubicek CP, Kominek J (1996) Gluconic acid. In: Roehr M (ed) Biotechnology, 2nd edn. VCH, New York, pp 348–362Google Scholar
  274. Saeki A, Taniguchi M, Matsushita K, Yoyama H, Theeragol G, Lotong N, Adachi O (1997a) Microbial aspects of acetate oxidation by acetic acid bacteria, unfavorable phenomena in vinegar fermentation. Biosci Biotech Biochem 61:317–323Google Scholar
  275. Saeki A, Theeragol G, Matsushita K (1997b) Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at high temperature. Biosci Biotech Biochem 61:138–145Google Scholar
  276. Sakura H, Lee HW, Sato S, Mukataka S, Takahashi J (1989) Gluconic acid production by Aspergillus niger immobilized on nonwoven fabric. J Ferment Bioeng 67:404–408Google Scholar
  277. Samuelov NS, Lamed R, Lowe S, Zeikus JG (1991) Influence of CO2-HCO3-levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens. Appl Environ Microbiol 57:3013–3019PubMedGoogle Scholar
  278. Samuelov NS, Datta R, Jain MK, Zeikus JG (1999) Whey fermentation by Anaerobiospirillum succinici producens for production of a succinate-based animal feed additive. Appl Env Microbiol 65:2260–2263Google Scholar
  279. Scheirlinck T, Mahillon J, Joos H, Dahaese P, Michiels F (1989) Integration and expression of α-amylase and endoglucanase genes in the Lactobacillus plantarum chromosome. Appl Environ Microbiol 55:2130–2137PubMedGoogle Scholar
  280. Schilling LB (1995) Chemicals from alternative feedstocks in the United States. FEMS Microbiol Rev 16:101–110Google Scholar
  281. Schlegel HG, Gottschalk G, Von Vartha R (1961) Formation and utilization of poly-β-hydroxybutyric acid by Knallgas bacteria (Hydrogenomonas). Nature 191:463–465PubMedGoogle Scholar
  282. Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus gene for synthesis of poly-β-hydroxybutyric acid and synthesis of PHB in Escherichia coli. J Bacteriol 170:5837–5847PubMedGoogle Scholar
  283. Senthuran A, Senthuran V, Mathasson B, Kaul R (1997) Lactic acid fermentation in a recycle batch reactor using immobilized Lactobacillus casei. Biotechnol Bioeng 55:841–853PubMedGoogle Scholar
  284. Shah MM, Cheryan M (1995a) Acetate production by Clostridium thermoaceticum in corn steep liquor media. J Ind Microbiol 15:424–428Google Scholar
  285. Shah MM, Cheryan M (1995b) Improvement of productivity in acetic acid fermentation with Clostridium thermoaceticum. Appl Biochem Biotechnol 51/52:418–422Google Scholar
  286. Shiraishi F, Kawakami K, Kono S, Tamura A (1989a) Continuous production of free gluconic acid by Gluconobacter suboxydans IFO 3290 immobilized by adsorption on ceramic honeycomb monolith: effect of reactor configuration on further oxidation of gluconic acid to ketogluconic acid. Appl Microbiol Biotechnol 31:445–447Google Scholar
  287. Shiraishi F, Kawakami K, Kono S, Tamura A, Tsuruta S, Kosmoki K (1989b) Characterization of production of free gluconic acid by Gluconobacter suboxydans absorbed on ceramic honeycomb monolith. Biotechnol Bioeng 33:1413–1418PubMedGoogle Scholar
  288. Sievers M, Sellmer S, Teuber M (1992) Acetobacter europaeus sp. nov., a main component of industrial vinegar fermenters in central Europe. Syst Appl Microbiol 15:386–392Google Scholar
  289. Sievers M, Ludwig W, Teuber M (1994a) Phylogenetic positioning of Acetobacter, Gluconobacter, Rhodophila, and Acidiphilium species as a branch of acidophilic bacteria in the α-subclass of proteobacteria based on 16S ribosomal DNA sequences. Syst Appl Microbiol 17:189–196Google Scholar
  290. Sievers M, Ludwig W, Teuber M (1994b) Phylogenetic positioning of Acetobacter, Gluconobacter, Rhodophila and Acidiphilium species as a branch of acidophilic bacteria in the α subclass of Proteobacteria based on 16S RNA sequences. Syst Appl Microbiol 17:352–354Google Scholar
  291. Sievers M, Ludwig W, Teuber M (1994c) Revival of the species Acetobacter methanolicus (ex: Uhlig et al., 1986) nom. rev. Syst Appl Microbiol 17:352–354Google Scholar
  292. Silva-Martinez M, Haltrich D, Novalic S, Kobe KD, Nidetzky B (1998) Simultaneous enzymatic syntheses of gluconic acid and sorbitol. Appl Biochem Biotechnol 70–72:863–875PubMedGoogle Scholar
  293. Silveira MM, Wisbeck E, Lemmel C (1999) Bioconversion of glucose and fructose to sorbitol and gluconic acid by untreated cells of Zymomonas mobilis. J Biotechnol 75:99–103PubMedGoogle Scholar
  294. Slater S, Houmiel KL, Tran M, Mitsky TA, Taylor NB, Padgette SR, Gruys KJ (1998) Multiple β-ketothiolase mediate poly(β-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol 180:1979–1987PubMedGoogle Scholar
  295. Slater S, Mitsky TA, Houmiel KL, Hao M, Reiser SE, Taylor NB, Tran M, Valentin HE, Rodriguez J, Stone DA, Padgette SR, Kishore G, Gruys KJ (1999) Metabolic engineering of Arabidopsis and Brassica for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production. Nat Biotechnol 17:1011–1016PubMedGoogle Scholar
  296. Smith WP (1993) Soap/Cosmetic Specialties 9:54–58Google Scholar
  297. Sokollek SJ, Hammes WP (1997) Description of a starter culture preparation for vinegar fermentation. Syst Appl Microbiol 20:481–491Google Scholar
  298. Sokollek SJ, Hertel C, Hammes WP (1998) Cultivation and preservation of vinegar bacteria. J Biotechnol 60:195–206Google Scholar
  299. Steinbüchel A (1991) Polyhydroxyalkanoic acids. In: Byrom D (ed) Biomaterials: novel materials from biological sources. Macmillan, New YorkGoogle Scholar
  300. Steinbüchel A (1996) PHB and other polyhydroxyalkanoic acids. In: Roehr M (ed) Biotechnology, vol 6, 2nd edn. VCH, Weinheim, pp 403–464Google Scholar
  301. Steinbüchel A, Füchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16:419–427PubMedGoogle Scholar
  302. Steinbüchel A, Gorenflo V (1997) Biosynthetic and biodegradable polyesters from renewable resources: current state and prospects. Macromol Symp 123:61–66Google Scholar
  303. Steinbüchel A, Schmack G (1995) Large-scale production of poly(3-hydroxyvaleric acid) by fermentation of Chromobacterium violaceum, processing, and characterization of the homopolyester. J Environ Polym Degrad 3:243–258Google Scholar
  304. Stols L, Donnelly MI (1997) Production of succinic acid through overexpression of NAD+-dependent malic enzyme in an Escherichia coli mutant. Appl Env Microbiol 63:2695–2701Google Scholar
  305. Stols L, Kulkarni G, Harris BG, Donnelly MI (1997) Expression of Ascaris suum malic enzyme in a mutant Escherichia coli allows production of succinic acid from glucose. Appl Biochem Biotechnol 63–65:153–158PubMedGoogle Scholar
  306. Suzuki T, Yamane T, Shimizu S (1986) Mass production of poly-β-hydroxybutyric acid by fed-batch culture with controlled carbon/nitrogen feeding. Appl Microbiol Biotechnol 24:370–374Google Scholar
  307. Swings J (1992) The genera acetobacter and gluconobacter. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, vol 3. Springer, New York, pp 2268–2286,
  308. Swings J, De Ley J (1977) The biology of Zymomonas. Bacteriol Rev 41:1–46PubMedGoogle Scholar
  309. Szmant HH (1989) Organic building blocks of the chemical industry. Wiley, New York, pp 347–348Google Scholar
  310. Taguchi H, Ohata T (1991) D-Lactate dehydrogenase is a member of the D-isomer-specific 2-hydrox acid dehydrogenase family. J Biol Chem 266:12588–12594PubMedGoogle Scholar
  311. Takahashi R, Fujimoto N, Suzuki M, Endo T (1997) Biodegradabilities of ethylenediamine-N, N-disuccinic acid (EDDS) and other chelating agents. Biosci Biotech Biochem 61:1957–1959Google Scholar
  312. Takemura H, Horinouchi S, Beppu T (1991) Novel insertion sequence IS1380 from Acetobacter pasteurianus is involved in loss of ethanol-oxidizing ability. J Bacteriol 173:7070–7076PubMedGoogle Scholar
  313. Takiyama E, Fujimaki T (1994) “BIONELLE” biodegradable plastic through chemical synthesis. In: Doi Y, Fukuda K (eds) Biodegradable plastics and polymers. Elsevier Science, Amsterdam, pp 150–174Google Scholar
  314. Tanaka K, Ishizaki A, Kanamaru T, Kawano T (1995) Production of poly(D-3-hydroxybutyrate) from CO2, H2, and O2 by high cell-density autotrophic cultivation of Alcaligenes eutrophus. Biotechnol Bioeng 45:268–275PubMedGoogle Scholar
  315. Taroncher-Oldenburg G, Nishia K, Stephanopoulos G (2000) Identification and analysis of polyhydroxyalkanoate-specific β-ketothiolase and acetoacetyl coenzyme A reductase genes in cyanobacterium Synechocystis sp. strain PCC6803. Appl Environ Microbiol 66:4440–4448PubMedGoogle Scholar
  316. Thauer RK (1989) Biochemistry of acetic acid metabolism in anaerobic chemotropic bacteria. Ann Rev Microbiol 43:43–67Google Scholar
  317. Toda K, Park YS, Asakura T, Cheng CY, Ohtake H (1989) High rate acetic acid production in a shallow flow bioreactor. Appl Microbiol Biotechnol 30:559–563Google Scholar
  318. Tsai SP, Moon S-H (1998) An integrated bioconversion process for the production of L-lactic acid from starchy potato feed stocks. Appl Biochem Biotechnol 70–72:417–428PubMedGoogle Scholar
  319. Tsao GT, Cao NJ, Du J, Gong CS (1999) Production of multifunctional organic acids from renewable resources. Adv Biochem Eng Biotechnol 65:243–280PubMedGoogle Scholar
  320. Tullo A (1999) BDO market embraces new technologies. Chemical Market Reporter 26 April 1999Google Scholar
  321. Turk R (1993) Metal free and low metal salt substitutes containing lysine. US Patent 5229161Google Scholar
  322. Uhlig H, Kahrbaum K, Steudel A (1986) Acetobacter methanolicus sp. nov., an acetophilic facultatively methylotrophic bacterium. Int J Syst Bacteriol 36:317–322Google Scholar
  323. Valentin HE, Mitsky TA, Mahadeo DA, Tran M, Gruys KJ (2000a) Application of a propionyl coenzyme A synthetase for poly(3-hydroxypropionate-co-3-hydroxybutyrate) accumulation in recombinant Escherichia coli. Appl Environ Microbiol 66:5253–5258PubMedGoogle Scholar
  324. Valentin HE, Reiser S, Gruys KJ (2000b) Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) formation from γ-aminobutyrate and glutamate. Biotechnol Bioeng 67:291–299PubMedGoogle Scholar
  325. Van der Werf MJ, Guettler MV, Jain MK, Zeikus JG (1997) Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z. Arch Microbiol 167:332–342PubMedGoogle Scholar
  326. Varadarajan S, Miller DJ (1999) Catalytic upgrading of fermentation-derived organic acids. Biotechnol Prog 15:845–854PubMedGoogle Scholar
  327. Verhave TH (1930) Verfahren zur bacteriellen oxydation organisher Verbindugen zwecks Herstellungen von Oxydationsprodukten wie Dioxyacton usw. German Patent 563,758. Chem Abstr 27:1085Google Scholar
  328. Vick Roy TB (1985) Lactic acid. In: Moo Young M (ed) Comprehensive biotechnology. Pergamon Press, Oxford/New York, pp 761–776Google Scholar
  329. Walker SA, Klaenhammer TR (2000) An explosive antisense RNA strategy for inhibition of a lactococcal bacteriophage. Appl Environ Microbiol 66:310–319PubMedGoogle Scholar
  330. Wang T-T, Lee BH (1997a) Plasmids in Lactobacillus. Crit Rev Biotechnol 17:227–272PubMedGoogle Scholar
  331. Wang FL, Lee SY (1997b) Poly(3-hydroxybutyrate) production with high productivity and high polymer content by a fed-batch culture of Alcaligenes latus under nitrogen limitation. Appl Environ Microbiol 63:3703–3706PubMedGoogle Scholar
  332. Wang F, Lee SY (1998) High cell density culture of metabolically engineered Escherichia coli for the production of poly(3-hydroxybutyrate) in a defined medium. Biotechnol Bioeng 58:325–328PubMedGoogle Scholar
  333. Wang X, Gong CS, Tsao GT (1998) Bioconversion of fumaric acid to succinic acid by recombinant E. coli. Appl Biochem Biotechnol 70–72:919–928Google Scholar
  334. Weusthuis RA, Huijberts GNM, Eggink G (1997) In: Eggink G, Steinbuchel A, Poirer Y, Witholt B (eds) Proceedings of the 1996 international symposium on bacterial polyhydroxyalkanoates. Production for MCL-polyhydroxyalkanoates. NRC Research Press, Davos, Switzerland, pp 102–109Google Scholar
  335. White D (1995) The physiology and biochemistry of prokaryotes. Oxford University Press, New YorkGoogle Scholar
  336. Wiegel J (1994) Acetate and the potential of homoacetogenic bacteria for industrial applications. In: Drake HL (ed) Acetogenesis. Chapman and Hall, New York, pp 484–504Google Scholar
  337. Wiegel J, Braun M, Gottschalk G (1981) Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr Microbiol 5:255–260Google Scholar
  338. Wilke D (1995) What should and what can biotechnology contribute to chemical bulk production? FEMS Microbiol Rev 16:89–100Google Scholar
  339. Wong HH, Lee SY (1998) Poly(3-hydroxybutyrate) production from whey by high density cultivation of recombinant Escherichia coli. Appl Microbiol Biotechnol 50:30–33PubMedGoogle Scholar
  340. Wood HG, Werkman CH (1938) The utilization of CO2 by the propionic acid bacteria. Biochem J 32:1262–1271PubMedGoogle Scholar
  341. Wood HG, Werkman CH (1940) The relationship of bacterial utilization of CO2 to succinic acid formation. Biochem J 34:129–138PubMedGoogle Scholar
  342. Xavier AMRB, Gonsalvas LMD, Moreira JL (1995) Operation patterns affecting lactic acid production in ultrafiltration cell recycle bioreactor. Biotechnol Bioeng 45:320–327PubMedGoogle Scholar
  343. Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuchi Y (1995) Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. nov., Ralstonia salanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. Microbiol Immunol 39:897–904PubMedGoogle Scholar
  344. Yamada K (1977) Recent advances in industrial fermentation in Japan. Biotech Bioeng 19:1563–1621Google Scholar
  345. Yamamoto I, Saiki T, Liu S-M, Ljungdahl LG (1983) Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. J Biol Chem 258:1826–1832PubMedGoogle Scholar
  346. Yang ST, Jin ZW, Chollar BH (1997) Production of low-cost acetate deicers from biomass and industrial wastes. Snow Removal and Ice Control Technology Transportation Research Board, National Research Council, Washington, DC, pp 60–69Google Scholar
  347. Yang ST, Huang YL, Jin Z, Huang Y, Zhu H, Qin W (1999) Calcium magnesium acetate at power-production cost: production of CMA deicer from cheese whey. US DOT Publication No. FHWA-RD-98-174Google Scholar
  348. Yasui Y (1958) Process for continuous production of vinegar. Japanese Patent 244,905 Publication No. Sho. 33–3798/1958Google Scholar
  349. Zachariou M, Scopes RK (1986) Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production. J Bacteriol 167:863–869PubMedGoogle Scholar
  350. Zeikus JG (1980) Chemical and fuel production by anaerobic bacteria. Ann Rev Microbiol 34:423–464Google Scholar
  351. Zeikus JG, Jain MK, Elankoven P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51:545–552Google Scholar
  352. Zhang DX, Cheryan M (1994) Starch to lactic acid in a continuous membrane reactor. Process Biochem 29(2):145–150Google Scholar
  353. Zhang H, Obias V, Gonyer K, Dennis D (1994) Production of polyhydroxyalkanoates in sucrose-utilizing recombinant Escherichia coli and Klebsiella strains. Appl Environ Microbiol 60:1198–1205PubMedGoogle Scholar
  354. Ziffer JA, Gaffney S, Rothenberg S, Cairney TJ (1971) Aldonic acid and aldonate compositions and production thereof. British Patent 1,249,347. Chem Abstr 79:113Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Palmer Rogers∗
  • Jiann-Shin Chen
    • 1
  • Mary Jo Zidwick
    • 2
  1. 1.Department of BiochemistryVirginia Polytechnic Institute and State University (Virginia Tech)BlacksburgUSA
  2. 2.Biotechnology Development CenterCargill, IncorporatedMinneapolisUSA

Personalised recommendations