Diversity and Biotechnological Applications of Prokaryotic Enzymes

  • Alane Beatriz Vermelho
  • Eliane Ferreira Noronha
  • Edivaldo Ximenes Ferreira Filho
  • Maria Antonieta Ferrara
  • Elba Pinto S. Bon


The global enzyme market was estimated at US $5 billion in 2009. Taking into consideration the compound annual growth rate (CAGR) of 6 % for the next 5 years, this market is expected to reach US $7 billion by 2015. Enzymes have been used in a wide range of applications in the fuel, pharmaceutical, brewing, food, animal feed, bioremediation, detergent, paper, and textile industries. The industrial sector is under continuous pressure to use more environmentally friendly processes and to find new methods to make products more competitive. Consequently, microbial enzymes are increasingly replacing conventional chemical catalysts in a range of industrial processes. Microbial enzymes present some advantages when compared to enzymes sourced from plants and animals which may be seasonal. There is a reliable supply of raw material to make microbial enzymes whenever necessary, and their production in bioreactors is easily controlled and predictable; excreted microbial enzymes are more robust in comparison to the intracellular animal and plant enzymes, and the microbial genetic diversity is a source of biocatalysts with a wide specificity range. This chapter is a review of the important prokaryotic enzyme families used in present-day biotechnology. A comprehensive survey on lipases, amylases, transglutaminases, cellulases, peroxidases, and peptidases, including keratinases, is presented. This chapter also focuses on the types of catalyzed reactions, the mechanisms of enzyme actions, and the main producing microorganisms, as well the contribution of molecular biology for enzyme production.

Despite the promising performance of newly studied enzymes in the laboratory, their application in the industrial milieu might fail due to their lack of robustness. However, as anaerobic, extremophilic, and marine bacteria might be a source of enzymes with superior chances of success in biotechnological processes, a great deal of laboratory effort has been concentrated on their production and characterization. Furthermore, the design of novel enzymes as well as molecular approaches such as enzyme evolution and metagenomic approaches can be used to identify and develop novel biocatalysts from uncultured bacteria—a treasure of unknown proteins.


Glycoside Hydrolase Aspartic Peptidase Genetically Modify Organism Lipase Gene Industrial Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank the technical assistance of Ms. Denise da Rocha de Souza, supported by fellowships from MCT/CNPq. Research supported by CAPES, FAPERJ, MCT/CNPq, and Conselho de Ensino para Graduados e Pesquisas (CEPG/UFRJ).


  1. Adekoya OA, Sylte I (2009) The thermolysin family (M4) of enzymes: therapeutic and biotechnological potential. Chem Biol Drug Design 73:7–16Google Scholar
  2. Ager DJ, Pantaleone DP, Henderson SA, Katritzky AR, Prakash I, Walters DE (1998) Commercial, synthetic nonnutritive sweeteners. Angew Chemie Int Ed 37:1802–1817Google Scholar
  3. Ando H, Adachi M, Umeda K, Matsuura A, Nonaka M, Uchio R, Tanaka H, Motoki M (1989) Purification and characteristics of a novel transglutaminase derived from microorganisms. Agric Biol Chem 53:2613–2617Google Scholar
  4. Andreaus J, Filho EXF (2008) Biotechnology of holocellulose-degrading enzymes. In: Hou CT, Shaw J-F (eds) Biocatalysis and bioenergy. Willey, New York, pp 197–229Google Scholar
  5. Arantes V, Saddler JN (2010) Acess to cellulose limits the efficiency of enzymatichydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:4–12PubMedGoogle Scholar
  6. Aravindan R, Anbumathi P, Viruthagiri T (2007) Lipase applications in food industry. Indian J Biotechnol 6:141–158Google Scholar
  7. Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183PubMedGoogle Scholar
  8. Arrizubieta MJ (2007) Transglutaminases. In: Polaina J, MacCabe AP (eds) Industrial enzymes: structure, function and applications. Springer, New York, pp 567–581Google Scholar
  9. Atkinson HJ, Babbitt PC, Sajid M (2009) The global cysteine peptidase landscape in parasites. Trends Parasitol 25(12):573–581PubMedGoogle Scholar
  10. Banbula A (1998) Amino-acid sequence and three-dimensional structure of the Staphylococcus aureus metalloproteinase at 1.72 A resolution. Structure 6:1185–1193PubMedGoogle Scholar
  11. Banerjee G, Scott-Craig JS, Walton JD (2010) Improving enzymes for biomass conversion: a basic research perspective. Bioenerg Res 3:82–92Google Scholar
  12. Battistuzzi G, Bellei M, Bortolotti CA, Sola M (2010) Redox properties of heme peroxidases. Arch Biochem Biophys 500:21–36PubMedGoogle Scholar
  13. Bayer EA, Belaich J-P, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–524PubMedGoogle Scholar
  14. Bayer EA, Lamed R, White BA, Flint HJ (2008) From cellulosomes to cellulosomics. Chem Rec 8:364–377PubMedGoogle Scholar
  15. Benner SA, Sismour AM (2005) Synthetic biology. Nat Rev Genet 6:6533–6544Google Scholar
  16. Betzel C, Klupsch S, Papendorf G, Hastrup S, Branner S, Wilson KS (1992) Crystal structure of the alkaline proteinase Savinase™ from Bacillus lentus at 1.4 Å resolution. J Mol Biol 223:427–445PubMedGoogle Scholar
  17. Bloois EV, Pazmiño DET, Winter RT, Fraaije MW (2010) A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Appl Microbiol Biotechnol 86:1419–1430PubMedGoogle Scholar
  18. Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MWW, Kelly RM (2008) Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19:210–217PubMedGoogle Scholar
  19. Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible way to explore nature’s chemical diversity. Chembiochem 3:619–627PubMedGoogle Scholar
  20. Bommarius AS, Blum JK, Abrahamson MJ (2011) Status of protein engineering for biocatalysts: how to design an industrially useful biocatalyst. Curr Opin Chem Biol 15:194–200PubMedGoogle Scholar
  21. Böttcher D, Bornscheuer UT (2010) Protein engineering of microbial enzymes. Curr Opin Microbiol 13:274–292PubMedGoogle Scholar
  22. Brady D, Jordaan EJ (2009) Advances in enzyme immobilisation. Biotechnol Lett 31:1639–1650PubMedGoogle Scholar
  23. Brown ME, Walker MC, Nakashige TG, Iavarone AT, Chang MC (2011) Discovery and characterization of heme enzymes from unsequenced bacteria: application to microbial lignin degradation. J Am Chem Soc 133(45):18006–18009. doi:10.1021/ja203972qPubMedGoogle Scholar
  24. Brustad EM, Arnold FH (2011) Optimizing non-natural protein function with directed evolution. Curr Opin Chem Biol 15:201–210PubMedGoogle Scholar
  25. Busto E, Gotor-Fernandez V, Gotor V (2010) Hydrolases: catalytically promiscuous enzymes for non-conventional reactions in organic synthesis. Chem Soc Rev 39:4504–4523PubMedGoogle Scholar
  26. Cai J, Xie Y, Song B, Wang Y, Zhang Z, Feng Y (2011) Fervidobacterium changbaicum Lip1: identification, cloning, and characterization of the thermophilic lipase as a new member of bacterial lipase family V. Appl Microbiol Biotechnol 89:1463–1473PubMedGoogle Scholar
  27. Caloni F (2009) Safety and efficacy of Ronozyme® ProAct (serine protease) for use as feed additive for chickens for fattening (EFSA panel on additives and products or substances used in animal feed, EFSA panel on genetically modified organisms). EFSA J 1185:1–15, ISSN 1831-4732.-7:7Google Scholar
  28. Cardenas F, de Castro MS, Sanchez-Montero JM, Sinisterra JV, Valmaseda M, Elson SW, Alvarez E (2001) Novel microbial lipases: catalytic activity in reactions in organic media. Enzyme Microb Technol 28:145–154PubMedGoogle Scholar
  29. Carere CR, Sparling R, Cicek N, Levin DB (2008) Third generation biofuels via direct cellulose fermentation. Int J Mol Sci 9:1342–1360PubMedGoogle Scholar
  30. Carvalho CCCR (2011) Enzymatic and whole cell catalysis: finding new strategies for old processes. Biotechnol Adv 29:75–83PubMedGoogle Scholar
  31. Casadio GM, Bergamini RCM (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–396PubMedGoogle Scholar
  32. Chao YP, Xie FH, Yang J, Lu JH, Qian SJ (2007) Screening for a new Streptomyces strain capable of efficient keratin degradation. J Environ Sci 19:1125–1128Google Scholar
  33. Charpe TW, Rathod VK (2010) Biodiesel production using waste frying oil. Waste Manag 26:487–494Google Scholar
  34. Chartrain M, Katz L, Marcin C, Thien M, Smith S, Fisher E (1993) Purification and characterization of a novel bioconverting lipase from Pseudomonas aeruginosa MB 5001. Enzyme Microb Technol 15:575–580Google Scholar
  35. Chater KF, Biró S, Lee KJ, Palmer T, Schrempf H (2010) FEMS Microbiol Rev 34:171–198PubMedGoogle Scholar
  36. Chen Z, Wilmanns M, Zeng AP (2010) Structural synthetic biotechnology: from molecular structure to predictable design for industrial strain development. Trends Biotechnol 28(10):535–542Google Scholar
  37. Chen R, Guo L, Dang H (2011) Gene cloning, expression and characterization of a cold- adapted lipase from a psychrophilic deep-sea bacterium Psychrobacter sp. C18. World J Microbiol Biotechnol 27:431–441Google Scholar
  38. Chi MC, Chen YH, Wu TJ, Lo HF, Lin LL (2010) Engineering of a truncated α-amylase of Bacillus sp. strain TS-23 for the simultaneous improvement of thermal and oxidative stabilities. J Biosci Bioeng 109(6):531–538PubMedGoogle Scholar
  39. Copley SD, Novak WR, Babbitt PC (2004) Divergence of function in the thioredoxin fold suprafamily: evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor. Biochemistry 43(44):13981–13995PubMedGoogle Scholar
  40. Cortez J, Bonner PLR, Griffin M (2004) Application of transglutaminases in the modification of wool textiles. Enzyme Microb Technol 34:64–72Google Scholar
  41. Cortez J, Anghierib A, Bonnera PLR, Griffin M, Freddi G (2007) Transglutaminase mediated grafting of silk proteins onto wool fabrics leading to improved physical and mechanical properties. Enzyme Microb Technol 40:1698–1704Google Scholar
  42. Darwin KH (2009) Prokaryotic ubiquitin-like protein (Pup), proteasomes and pathogenesis. Nat Rev Microbiol 7(7):485–491PubMedGoogle Scholar
  43. Dash C, Kulkarni A, BenRao M (2003) Aspartic peptidase inhibitors: implications in drug development. Crit Rev Biochem Mol Biol 38:89–119PubMedGoogle Scholar
  44. Date M, Yokoyama K, Umezawa Y, Matsui H, Kikuchi Y (2003) Production of native-type Streptoverticillium mobaraense transglutaminase in Corynebacterium glutamicum. Appl Environ Microbiol 69:3011–3014PubMedGoogle Scholar
  45. Davies GJ, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859PubMedGoogle Scholar
  46. Demain AL, Newcomb M, Wu JHD (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124–154PubMedGoogle Scholar
  47. Dharmsthiti S, Pratuangdejkul J, Theeragool GT, Luchai S (1998) Lipase activity and gene cloning of Acinetobacter calcoaceticus LP009. J Gen Appl Microbiol 44:139–145PubMedGoogle Scholar
  48. Dheeman DS, Henehan GTM, Frías JM (2011) Purification and properties of Amycolatopsis mediterranei DSM 43304 lipase and its potential in flavour ester synthesis. Bioresour Technol 102:3373–3379PubMedGoogle Scholar
  49. Dive V, Yiotakis A, Nicolaou A, Toma F (1990) Inhibition of Clostridium histolyticum collagenases by phosphonamide peptide inhibitors. Eur J Biochem 191:685–693PubMedGoogle Scholar
  50. Dolynchuk KN, Bowness JM (1999) Use of transglutaminase inhibitor for the treatment of scar tissue. US Patent US5885982Google Scholar
  51. Doman-Pytka M, Bardowski J (2004) Pullulan degrading enzymes of bacterial origin. Crit Rev Microbiol 30(2):107–121PubMedGoogle Scholar
  52. Du X, Choi GC, Kim R, Wang W, Jancarik J, Yokota H, Kim SH (2000) Crystal structure of an intracellular protease from Pyrococcus horikoshii at 2-Å resolution. Proc Natl Acad Sci 97(26):14079–14084PubMedGoogle Scholar
  53. Eckert LR, Sturniolo MT, Broome AM, Ruse M, Rorkez EA (2005) Transglutaminase function in epidermis. J Invest Dermatol 124:481–492PubMedGoogle Scholar
  54. Fan Z, Yue C, Tang Y, Zhang V (2009) Cloning, sequence analysis and expression of bacterial lipase-coding DNA fragments from environment in Escherichia coli. Mol Biol Rep 36:1515–1519PubMedGoogle Scholar
  55. Feller G, Gerday G (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1(3):200–208PubMedGoogle Scholar
  56. Ferrer M, Beloqui A, Golyshina OV, Plou FJ, Neef A, Chernikova TN, Fernández-Arrojo L, Ghazi I, Ballesteros A, Elborough K, Timmis KN, Golyshin PN (2007) Biochemical and structural features of a novel cyclodextrinase from cow rumen metagenome. Biotechnol J 2(2):207–213PubMedGoogle Scholar
  57. Fessner W, Anthonsen A (2009) Modern biocatalysis. Wiley-VCH, WeinheimGoogle Scholar
  58. FitzGerald RJ, O’Cuinn G (2006) Enzymatic debittering of food protein hydrolysates. Biotechnol Adv 24:234–237PubMedGoogle Scholar
  59. Folk JE (1980) Transglutaminases. Annu Rev Biochem 49:517–531PubMedGoogle Scholar
  60. Freedonia (2005) World enzymes to 2009. Freedonia Group Incorporated, ClevelandGoogle Scholar
  61. Freedonia (2009) World enzymes to 2013 – Market research, market share, market size, sales, demand forecast, market leaders, company profiles, industry trends. Freedonia Group Incorporated, Cleveland, Accessed 05 Jul 2011
  62. Friedrich J, Gradisar H, Vrecl M, Pogacnik A (2005) In vitro degradation of porcine skin epidermis by a fungal keratinase of Doratomyces microsporus. Enzyme Microb Technol 36:455–460Google Scholar
  63. Fukuda H, Hama S, Talamampudi S, Noda H (2008) Whole-cell biocatalysts for biodiesel fuel production. Trends Biotechnol 26:668–673PubMedGoogle Scholar
  64. Fusek M, Lin XL, Tang T (1990) Enzymic properties of thermopsin. J Biol Chem 265:1496–1501PubMedGoogle Scholar
  65. Gao DN, Uppugundia SPS, Chundawat X, Yu S, Hermanson K, Gowda P, Brumm D, Mead VB, Dale BE (2010) Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnol Biofuels 4:5Google Scholar
  66. Garabito MJ, Maquez MC, Ventosa A (1998) Halotolerant Bacillus diversity in hypersaline environments. Can J Microbiol 44:95–102Google Scholar
  67. Garcia-Arellano H, Alcalde M, Ballesteros A (2004) Use and improvement of microbial redox enzymes for environmental purposes. Microb Cell Fact 3:10PubMedGoogle Scholar
  68. Gerritse G, Hommes RW, Quax WJ (1998) Development of a lipase fermentation process that uses a recombinant Pseudomonas alcaligenes strain. Appl Environ Microbiol 64(7):2644–2651Google Scholar
  69. Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley A, Thomas DW, Algire MA, Merryman C, Young L, Noskov VN, Glass JI, Enter JV, Hutchison CA III, Smith HO (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319:1215–1220PubMedGoogle Scholar
  70. Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–396Google Scholar
  71. Gilbert HJ (2007) Cellulosomes: microbial nanomachines that display plasticity in quaternary structure. Mol Microbiol 63(6):1568–1576PubMedGoogle Scholar
  72. Gilbert HJ, Hazlewood GP (1993) Bacterial cellulases and xylanases. J Gen Microbiol 139:187–194Google Scholar
  73. Ginalski K, Kinch L, Leszek Rychlewski L, Grishin NV (2004) BTLCP proteins: a novel family of bacterial transglutaminase-like cysteine proteinases. Trends Biochem Sci 29(8):392–395PubMedGoogle Scholar
  74. Global Industry Analysts (2011) Industrial enzymes: a global strategic business report. Global Industry Analysts, San Jose, Accessed 05 July 2011
  75. Goldberg DM (2005) Clinical enzymology: an autobiographical history. Clin Chim Acta 357:93–112PubMedGoogle Scholar
  76. Gosh PK, Saxena RK, Gupta R, Yadav RP, Davison S (1996) Microbial lipases: production and applications. Sci Prog 79:119–157Google Scholar
  77. Gottesman S (2003) Proteolysis in bacterial regulatory circuits. Annu Rev Cell Dev Biol 19:565–587PubMedGoogle Scholar
  78. Govan V, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539–574PubMedGoogle Scholar
  79. Gradisar H, Friedrich J, Krizaj I, Jerala R (2005) Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Appl Environ Microbiol 71:3420–3426PubMedGoogle Scholar
  80. Green H, Dijan P (1996) Cosmetic containing comeocyte proteins and transglutaminase, and method of application. US Patent US5525336Google Scholar
  81. Grenier D, Tanabe S (2010) Porphyromonas gingivalis gingipains trigger a proinflammatory response in human monocyte-derived macrophages through the p38α mitogen-activated protein kinase signal transduction pathway. Toxins 2:341–352PubMedGoogle Scholar
  82. Grunenfelder B, Rummel G, Vohradsky J, Roder D, Langen H, Jenal U (2001) Proteomic analysis of the bacterial cell cycle. Proc Natl Acad Sci 98:4681–4686PubMedGoogle Scholar
  83. Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Biochem Biotechnol 64:763–781Google Scholar
  84. Gupta R, Ramnani P (2006) Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol 70:21–33PubMedGoogle Scholar
  85. Gupta P, B LS, Shrivastava R (2011) Lipase catalyzed- transesterification of vegetable oils by lipolytic bacteria. Research J Microbiol 6:281–288Google Scholar
  86. Hadeball W (1991) Production of lipase by Yarrowia lipolytica I. Lipases from yeasts. Acta Biotechnol 11:159–167Google Scholar
  87. Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol 24(12):549–556PubMedGoogle Scholar
  88. Hamid NSA, Zen HB, Tein OB, Halifah YM, Saari N, Bakar FA (2003) Screening and identification of extracellular lipase-producing thermophilic bacteria from a Malaysian hot spring. World J Microbiol Biotechnol 19:961–968Google Scholar
  89. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251Google Scholar
  90. Hasan F, Shah AA, Hameed A (2009) Methods for detection and characterization of lipases: a comprehensive review. Biotechnol Adv 27:782–798PubMedGoogle Scholar
  91. Hasan F, Shah AA, Javed S, Hameed A (2010) Enzymes used in detergents: lipases. Afr J Biotechnol 9:4836–4844Google Scholar
  92. Hess M, Sczyrba A, Egan R, Kim T-W, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331(28):463–467PubMedGoogle Scholar
  93. Hettinga WG, Junginger HM, Dekker SC, Hoogwijk M, Mcaloon AJ, Hicks KB (2009) Understanding the reductions in US corn ethanol production costs: an experience curve approach. Energy Policy 37:190–203Google Scholar
  94. Himmel ME, Ruth MF, Wyman CE (1999) Cellulase for commodity products from cellulose biomass. Curr Opin Biotechnol 10:358–364PubMedGoogle Scholar
  95. Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimtos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807PubMedGoogle Scholar
  96. Hofmann B, Hecht HJ, Flohé L (2002) Peroxiredoxins. J Biol Chem 383(3–4):347–364Google Scholar
  97. Horiguchi Y, Inoue N, Masuda M, Kashimoto T, Katahira J, Sugimoto N, Matsuda M (1997) Bordetella bronchiseptica dermonecrotizing toxin induces reorganization of actin stress fibers through deamidation of Gln-63 of the GTP binding protein Rho. Proc Natl Acad Sci USA 94:11623–11626PubMedGoogle Scholar
  98. Horimoto Y, Dee DR, Yada RY (2009) Multifunctional aspartic peptidase prosegments. N Biotechnol 25:318–324PubMedGoogle Scholar
  99. Horta BB, Oliveira MA, Discola KF, Cussiol JRR, Netto LES (2010) Structural and biochemical characterization of peroxiredoxin Qβ_from Xylella fastidiosa. J Biol Chem 285(21):16051–16065PubMedGoogle Scholar
  100. Hough DW, Danson MJ (1999) Extremozymes. Curr Opin Chem Biol 3:39–46PubMedGoogle Scholar
  101. Hu BH, Messersmith PB (2003) Formation of hydrogels. J Am Chem Soc 125:14298–14299PubMedGoogle Scholar
  102. Ilies M, Banciu MDM, Scozzafava A, Ilies MA, Caproiu MT, Supuran CT (2003) Protease inhibitors: synthesis of bacterial collagenase and matrix metalloproteinase inhibitors incorporating arylsulfonylureido and 5-Dibenzo- suberenyl/suberyl moieties. Bioorg Med Chem 11:2227–2239PubMedGoogle Scholar
  103. Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403PubMedGoogle Scholar
  104. Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351PubMedGoogle Scholar
  105. Jaeger K-E, Eggert T, Eipper A, Reetz MT (2001) Directed evolution and the creation of enantioselective biocatalysts. Appl Microbiol Biotechnol 55:519–530PubMedGoogle Scholar
  106. Jensen K, Østergaard PR, Wilting R, Lassen SF (2010) Identification and characterization of a bacterial glutamic peptidase. BMC Biochem 11:47PubMedGoogle Scholar
  107. Joong-Jae K, Masui R, Kuramitsu S, Seo JH, Kim K, Sung MH (2008) Characterization of growth-supporting factors produced by Geobacillus toebii for the Commensal Thermophile Symbiobacterium toebii. J Microbiol Biotechnol 18(3):490–496Google Scholar
  108. Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26:457–470PubMedGoogle Scholar
  109. Josten A, Meusel M, Spener F, Haalck L (1999) Enzyme immobilization via microbial transglutaminase: a method for the generation of stable sensing surfaces. J Mol Catal B Enzym 7:57–66Google Scholar
  110. Kamijo T, Saito A, Ema S, Yoh I, Hayashi H, Nagata R, Nagata Y, Ando A (2011) Molecular and enzymatic characterization of a subfamily I.4 lipase from an edible oil-degrader Bacillus sp. HH-01. Antonie van Leeuwenhoek 99:179–187PubMedGoogle Scholar
  111. Kanjanavas P, Khuchareontaworn S, Khawsak P, Pakpitcharoen A, Pothivejkul K, Santiwatanakul S, Matsui K, Kajiwara T, Chansiri K (2010) Purification and characterization of organic solvent and detergent tolerant lipase from thermotolerant Bacillus sp. RN2. Int J Mol Sci 11:3783–3792PubMedGoogle Scholar
  112. Kanlayakrit W, Boonpan A (2007) Screening of halophilic lipase-producing bacteria and characterization of enzyme for fish sauce quality improvement. Kasetsart J Nat Sci 41:576–585Google Scholar
  113. Kantyka T, Rawlings ND, Potempa J (2010) Prokaryote-derived protein inhibitors of peptidases: a sketchy occurrence and mostly unknown function. Biochimie 92:1644–1656PubMedGoogle Scholar
  114. Kashiwagi T, Yokoyama K, Ishikawa K, Ono K, Ejima D, Matsui H, Suzuki E (2002) Crystal structure of microbial transglutaminase from Streptoverticillium mobaraense. J Biol Chem 277:44252–44260PubMedGoogle Scholar
  115. Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 3:301–355Google Scholar
  116. Kelly RM, Dijkhuizen L, Leemhuis H (2009) Starch and α-glucan acting enzymes, modulating their properties by direct evolution. J Biotechnol 140:184–193PubMedGoogle Scholar
  117. King BC, Waxman KD, Nenni NV, Walker LP, Bergstrom GC, Gibson DM (2011) Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnol Biofuels 4:4PubMedGoogle Scholar
  118. Kobayashi K, Yamanaka S, Miwa K, Suzuki S, Eto Y, Tanita Y, Yokozeki K, Hashiguchi K (1999) Bacillus-derived TGase US 5731183Google Scholar
  119. Kobayashi K, Yamanaka S, Tanita Y, Tsuyoshi N, Fudo R, Shinozaki J, Yokozeki K, Suzuki S (2002) Process for producing transglutaminase by microorganism US 6472182Google Scholar
  120. Korniłłowicz-Kowalska T, Justyna B (2011) Biodegradation of keratin waste: theory and practical aspects. Waste Manag 31(8):1689–1701PubMedGoogle Scholar
  121. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391PubMedGoogle Scholar
  122. Kunert J (1972) Keratin decomposition by dermatophytes: evidence of the sulphitolysis of the protein. Experientia 28:1025–1026PubMedGoogle Scholar
  123. Kuraishi C, Yamazaki K, Susa Y (2001) Transglutaminase: its utilization in the food industry. Food Rev Int 17:221–232Google Scholar
  124. Kwak J, Lee K, Shin DH, Maeng JS, Park DS, Oh HW, Son KH, Bae KS (2007) Biochemical and genetic characterization of arazyme, an extracellular metalloprotease produced from Serratia proteamaculans HY-3. J Microbiol Biotechnol 175(5):761–768Google Scholar
  125. Lagaert S, Beliën T, Volckaert G (2009) Plant cell walls: protecting the barrier from degradation by microbial enzymes. Semin Cell Dev Biol 20:1064–1073PubMedGoogle Scholar
  126. Larre C, Denery Papini S, Popineau Y, Deshayes C, Desserme C, Lefebvre J (2000) Biochemical analysis and rheological properties of gluten modified by transglutaminase. Cereal Chem 77:121–127Google Scholar
  127. Lazniewski M, Steczkiewicz K, Knizewski L, Wawer I, Ginalski K (2011) Novel transmembrane lipases of alpha/beta hydrolase fold. FEBS Lett 585:870–874PubMedGoogle Scholar
  128. Leschine SB (1995) Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49:399–426PubMedGoogle Scholar
  129. Li X-H, Yang H-J, Roy B, Wang D, Yue W-F, Jiang L-J, Park EY, Miao Y-G (2009) The most stirring technology in future: cellulase enzyme and biomass utilization. Afr J Biotechnol 8:2418–2422Google Scholar
  130. Liese A, Seelbach K, Wandrey C (2006) Industrial biotransformations. Wiley-VCH, WeinheimGoogle Scholar
  131. Lin X, Tang J (1990) Purification, characterization, and gene cloning of thermopsin, a thermostable acid protease from Sulfolobus acidocaldarius. J Biol Chem 265:1490–1495PubMedGoogle Scholar
  132. Lin X, Wong SL, Miller ES, Shih JCH (1997) Expression of the Bacillus licheniformis PWD-1 keratinase gene in B. subtilis. J Ind Microbiol Biotechnol 19:134–138PubMedGoogle Scholar
  133. López-Otín C, Matrisian LM (2007) Emerging roles of proteases in tumour suppression. Nat Rev Cancer 7:800–808PubMedGoogle Scholar
  134. Luetz S, Giver L, Lalonde J (2008) Engineered enzymes for chemical production. Biotechnol Bioeng 101:647–653PubMedGoogle Scholar
  135. Lynd LR, Van WH, Zyl JEMB, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583PubMedGoogle Scholar
  136. Ma J, Zhang Z, Wang B, Kong X, Wang Y, Shugui Cao S, Feng Y (2006) Overexpression and characterization of a lipase from Bacillus subtilis. Protein Expr Purif 45:22–29PubMedGoogle Scholar
  137. Makarova KS, Aravind L, Koonin EV (1999) A superfamily of archaeal, bacterial, and eukaryotic proteins homologous to animal transglutaminases. Protein Sci 8(8):1714–1719PubMedGoogle Scholar
  138. Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5:500–516PubMedGoogle Scholar
  139. Mala JGS, Takeuchi S (2008) Understanding structural features of microbial lipases: an overview. Anal Chem 3:9–19Google Scholar
  140. Malloy JL, Thibodeaux RAW, O’Callaghan BARJ, Wright JR (2005) Pseudomonas aeruginosa protease IV degrades surfactant proteins and inhibits surfactant host defense and biophysical functions. J Physiol Lung Cell Mol Physiol 288:L409–L418Google Scholar
  141. Marin-Navarro J, Polaina J (2011) Glucoamylases: structural and biotechnological aspects. Appl Microbiol Biotechnol 89:1267–1273PubMedGoogle Scholar
  142. Maurer KH (2004) Detergent proteases. Curr Opin Biotechnol 15:330–334PubMedGoogle Scholar
  143. McDermott MK, Chen T, Williams CM, Markley KM, Payne GF (2004) Mechanical properties of biomimetic tissue adhesive based on the microbial transglutaminase-catalyzed crosslinking of gelatin. Biomacromolecules 5:1270–1279PubMedGoogle Scholar
  144. Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Biotechnol 108:95–120PubMedGoogle Scholar
  145. Messaoudi A, Belguith H, Gram I, Hamida JB (2010) Classification of EC bacterial true lipases using phylogenetic analysis. African J Biotechnol 9:8243–8247Google Scholar
  146. Metzmacher I, Ruth P, Abel M, Friess W (2007) In vitro binding of matrix metalloproteinase-2 (MMP-2), MMP-9, and bacterial collagenase on collagenous wound dressings. Wound Repair Regen 2:549–555Google Scholar
  147. Mireya Santos M, Torné JM (2009) Recent patents on transglutaminase production and applications: a brief review. Recent Pat Biotechnol 3:166–174PubMedGoogle Scholar
  148. Mohorcic MA, Torkar A, Friedrich J, Kristl J, Murdan S (2007) An investigation into keratinolytic enzymes to enhance ungual drug delivery. Int J Pharm 332:196–201PubMedGoogle Scholar
  149. Monroe A, Setlow P (2006) Localization of the transglutaminase cross-linking sites in the Bacillus subtilis spore coat protein GerQ. J Bacteriol 188:7609–7616PubMedGoogle Scholar
  150. Moreira LRS, von Gal Milanezi N, Filho EXF (2011) Enzymology of plant cell wall breakdown: an update. In: Buckeridge MS, Goldman GH (eds) Routes to cellulosic ethanol. Springer, New York, pp 73–96Google Scholar
  151. Murata S, Yashiroda S, Tanaka K (2009) Molecular mechanisms of proteasome assembly. Nat Rev 10:104–115Google Scholar
  152. Murooka Y, Yamashita M (2001) Genetic and protein engineering of diagnostic enzymes, cholesterol oxidase and xylitol oxidase. J Biosci Bioeng 91:433–441PubMedGoogle Scholar
  153. Muszbek L, Adany R, Mikkola H (1996) Novel aspects of blood coagulation factor XIII. I. Structure, distribution, activation, and function. Crit Rev Clin Lab Sci 3:357–421Google Scholar
  154. Nardini M, Dijkstra BW (1999) α/β Hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol 9:732–737PubMedGoogle Scholar
  155. Nataf Y, Bahari L, Kahel-Raifer H, Borovak I, Lamed R, Bayer EA, Sonenshein AL, Shoham Y (2010) Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors. Proc Natl Acad Sci 107(43):18646–18651PubMedGoogle Scholar
  156. Neves MA, Kimura T, Shimizu N, Nakajima M (2007) State of the art and future trends of bioethanol production. Dyn Biochem Process Biotech Mol Biol 1:1–14Google Scholar
  157. Ney KH (1979) Bitterness of peptides: amino acid composition and chain length. In: Bondreau JC (ed) Food taste chemistry. American Chemical Society, Washington, DC, pp 149–173Google Scholar
  158. Nghiem NP, Taylor F, Johnston DB, Shelly JK, Hicks KB (2011) Scale-up of ethanol production from winter barley by the EDGE (enhanced dry grind enzymatic) process in fermentors up to 300 l. Appl Biochem Biotechnol 165(3–4):870–882. doi:10.1007/s12010-011-9304-1PubMedGoogle Scholar
  159. Nichaus F, Bertoldo C, Kühler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 89:1267–1273Google Scholar
  160. Ohnishi A, Nagano A, Fujimoto N, Suzuki M (2011) Phylogenetic and physiological characterization of mesophilic and thermophilic bacteria from a sewage sludge composting process in Sapporo, Japan. World J Microbiol Biotechnol 27:333–340Google Scholar
  161. Olempska-Beer ZWS, Merker RI, Ditto MD, DiNovi MJ (2006) Food-processing enzymes from recombinant microorganisms—a review. Regul Toxicol Pharmacol 45:144–158PubMedGoogle Scholar
  162. Orenzen PC, Schlimme E (1998) Properties and potential fields of application of transglutaminase preparations in dairying. Bull Int Dairy Fed 332:347Google Scholar
  163. Otero JM, Nielsen J (2010) Industrial systems biology. Biotechnol Bioeng 105:439–460PubMedGoogle Scholar
  164. Paetzel M, Andrew K, Strynadka NCJ, Dalbey RE (2002) Signal peptidases. Chem Rev 102:4549–4579PubMedGoogle Scholar
  165. Panesar PS, Marwaha SS, Kennedy JF (2006) Zymomonas mobilis: an alternative ethanol producer. J Chem Technol Biotechnol 81:623–635Google Scholar
  166. Pariza MW, Cook M (2010) Determining the safety of enzymes used in animal feed. Regul Toxicol Pharmacol 56:332–342PubMedGoogle Scholar
  167. Pason P, Kosugi A, Waeonukul R, Tachaapaikoon C, Ratanakhanokchai K, Arai T, Murata Y, Nakajima J, Mori Y (2010) Purification and characterization of a multienzyme complex produced by Paenibacillus curdlanolyticus B-6. J Ind Microbiol Biotechnol 85:573–580Google Scholar
  168. Peng R, Lin J, Wei D (2010) Purification and characterization of an organic solvent-tolerant lipase from Pseudomonas aeruginosa CS-2. Appl Biochem Biotechnol 162:733–743PubMedGoogle Scholar
  169. Pérez J, Munõz-Dorado J, de la Rubia T, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63PubMedGoogle Scholar
  170. Plácido D, Fernandes CG, Carrondo IA, Henriques MA, Adriano HO, Archer M (2008) Auto-induction and purification of a Bacillus subtilis transglutaminase (Tgl) and its preliminary crystallographic characterization. Protein Expr Purif 59:1–8PubMedGoogle Scholar
  171. Pohlenz HD, Boidol W, Schuttke I, Streber W (1992) Purification and properties of an Arthrobacter oxydans P52 carbamate hydrolase specific for the herbicide phenmedipham and nucleotide sequence of the corresponding gene. J Bacteriol 174:6600–6607PubMedGoogle Scholar
  172. Polgar L (2005) The catalytic triad of serine peptidases. Cell Mol Life Sci 62:2161–2172PubMedGoogle Scholar
  173. Poole LB (2005) Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Arch Biochem Biophys 433:240–254PubMedGoogle Scholar
  174. Popa VI (1998) Enzymatic hydrolysis of hemicelluloses and cellulose. In: Severian D (ed) Polysaccharides structural diversity and functional versatility. Marcel Dekker, New York, pp 969–1006Google Scholar
  175. Potempa JJ, Pike RN (2009) Corruption of innate immunity by bacterial proteases. J Innate Immun 1:70–87PubMedGoogle Scholar
  176. Potvin E, Lehoux DE, Kukavica-Ibrulj I, Richard KL, Sanschagrin F, Law GW, Levesque RC (2003) Pseudomonas in vivo functional genomic for high-throughput screening of new virulence factors and antibacterial targets. Environ Microbiol 5(12):1294–1308PubMedGoogle Scholar
  177. Prakash O, Jaiswal N (2010) α-Amylase: an ideal representative of thermostable enzymes. Appl Biochem Biotechnol 160:2401–2414PubMedGoogle Scholar
  178. Qing X, Zhang XH (2002) Detergent enzyme application handbook version 2. Chinese Light Industry Press and Novozymes, BeijingGoogle Scholar
  179. Ragkousi K, Setlow P (2004) Transglutaminase-mediated cross-linking of GerQ in the coats of Bacillus subtilis spores. J Bacteriol 186(17):5567–5575PubMedGoogle Scholar
  180. Rahman RNZRA, Baharum SN, Basri M (2005) High-yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. strain S5. Anal Biochem 341:267–274PubMedGoogle Scholar
  181. Raksakulthai R, Haard NF (2003) Exopeptidases and their application to reduce bitterness in food: a review. Crit Rev Food Sci Nutr 43(4):401–445PubMedGoogle Scholar
  182. Raman B, Pan C, Hurst GB, Rodriguez M, McKeown CK, Lankford PK, Samatova NF, Mielenz JR (2009) Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS ONE 4(4):e5271PubMedGoogle Scholar
  183. Ramnani P, Singh R, Gupta R (2005) Keratinolytic potential of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation. Can J Microbiol 51:191–196PubMedGoogle Scholar
  184. Rathi P, Saxena RK, Gupta R (2001) A novel alkaline lipase from Burkholderia cepacia for detergent formulation. Process Biochem 37:187–192Google Scholar
  185. Rawlings ND, Barrett AJ (2004) Introduction: metallopeptidases and their clans. In: Barrett AJ, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes, 2nd edn. Elsevier, London, pp 231–268Google Scholar
  186. Rawlings ND, Bateman A (2009) Pepsin homologues in bacteria. BMC genomics 10:437–446PubMedGoogle Scholar
  187. Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucl Acids Res 38:D227–D233PubMedGoogle Scholar
  188. Reetz MT, Jaeger KE (1998) Overexpression, immobilization and biotechnological application of pseudomonas lipases. Chem Phys Lipids 93:3–14PubMedGoogle Scholar
  189. Renewable Fuels Association (2011) Ethanol industry outlook: building bridges to a more sustainable future. Accessed 20 July 2011
  190. Rodrigues GC, Aguiar AP, Vianez Júnior JLSG, Macrae A, Nogueira de Melo AC, Vermelho AB (2010) Peptidase inhibitors as a possible therapeutic strategy for chagas disease. Curr Enzyme Inhib 6:183–194Google Scholar
  191. Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39(5):1747–1763PubMedGoogle Scholar
  192. Rosenau F, Jaeger KE (2000) Bacterial lipases from pseudomonas: regulation of gene expression and mechanisms of secretion. Biochimie 82:1023–1032PubMedGoogle Scholar
  193. Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845PubMedGoogle Scholar
  194. Ruiz C, Blanco A, Javier Pastor FI, Diaz P (2002) Analysis of Bacillus megaterium lipolytic system and cloning of LipA, a novel subfamily I.4 bacterial lipase. FEMS Microbiol Lett 217(2):263–267PubMedGoogle Scholar
  195. Ruiz-Herrera J, Iranzo M, Elorza MV, Sentandreu R, Mormeneo S (1995) Involvement of transglutaminase in the formation of covalent cross-links in the cell wall of Candida albicans. Arch Microbiol 164(3):186–193PubMedGoogle Scholar
  196. Rye CS, Withers SG (2000) Glycosidase mechanisms. Curr Opin Chem Biol 4:573–580PubMedGoogle Scholar
  197. Sá-Pereira P, Duarte JC, Ferrara MA, Lacerda PSB, Alves FC (2008) Biocatálise: Estratégias de Inovação e Criação de Mercados. In: Bon EPS, Corvo L, Vermelho AB, Paiva CLA, Ferrara MA, Coelho RR, Alencastro RB (eds) Enzimas em Biotecnologia: Producão, Aplicações e Mercado. Interciência, Brasil, pp 433–462Google Scholar
  198. Saeki K, Ozaki K, Kobayashi T, Ito S (2007) Detergent alkaline proteases: enzymatic properties, genes, and crystal structures. J Biosci Bioeng 103(6):501–508PubMedGoogle Scholar
  199. Saha BC, Hayashi K (2001) Debittering of protein hydrolyzates. Biotechnol Adv 19:355–370PubMedGoogle Scholar
  200. Sangeetha R, Arulpandi I, Geetha A (2011) Bacterial lipases as potential biocatalysts: an overview. Res J Microbiol 6:1–24Google Scholar
  201. Sank A, Chi M, Shima T, Reich R, Martin GR (1989) Increased calcium levels altecellular and molecular events in wound healing. Surgery 106:1141–1148PubMedGoogle Scholar
  202. Sano K, Kumazawa Y, Yasueda H, Seguro K, Motoki M (1998) TGase originating from Crassostrea gigas US 5736356Google Scholar
  203. Santos MAL, Marques S, Gil M, Tegoni M, Scozzafava A, Supuran CT (2003) Protease inhibitors: synthesis of bacterial collagenase and matrix metalloproteinase inhibitors incorporating succinyl hydroxamate and iminodiacetic acid hydroxamate moieties. J Enzyme Inhib Med Chem 18:233–242PubMedGoogle Scholar
  204. Saxena RK, Sheoran A, Giri B, Davidson WS (2003) Purification strategies for microbial lipases. J Microbiol Methods 52:1–18PubMedGoogle Scholar
  205. Schmidt G, Selzer J, Lerm M, Aktories K (1998) The Rho-deamidating cytotoxic necrotizing factor 1 from Escherichia coli possesses transglutaminase activity. J Biol Chem 273:13669–13674PubMedGoogle Scholar
  206. Schmidt-dannert C (1999) Recombinant microbial lipases for biotechnological applications. Bioorg Med Chem 7:1–8Google Scholar
  207. Schrempf H (2007) Biology of streptomycetes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, a handbook on the biology of bacteria. Springer, New YorkGoogle Scholar
  208. Schwarz WH, Zverlov W, Bahl H (2004) Extracellular glycosyl hydrolases from clostridia. Adv Appl Microbiol 56:215–261PubMedGoogle Scholar
  209. Seitz A, Schneider F, Pasternack R, Fuchsbauer HL, Hampp N (2001) Enzymatic cross-linking of purple membranes catalyzed by bacterial transglutaminase. Biomacromolecules 2:233–238PubMedGoogle Scholar
  210. Serafini-Fracassini D, Del Duca S (2008) Transglutaminases: widespread cross-linking enzymes in plants. Ann Bot 102(2):145–152PubMedGoogle Scholar
  211. Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19:627–662PubMedGoogle Scholar
  212. Shu ZY, Jianga H, Lin R-F, Jianga YM, Lina L, Huanga JZ (2010) Technical methods to improve yield, activity and stability in the development of microbial lipases. J Mol Catal B Enzym 62:1–8Google Scholar
  213. Sieprawska-Lupa M, Mydel P, Krawczyk K, Wójcik K, Puklo M, Lupa B, Suder P, Silberring J, Reed M, Pohl J, Shafer W, McAleese F, Foster T, Travis J, Potempa J (2004) Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus – derived proteinases. Antimicrob Agents Chemother 48:4673–4679PubMedGoogle Scholar
  214. Siezen RJ, Leunissen JAM (1997) Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci 6:501–523PubMedGoogle Scholar
  215. Sims R, Taylor M, Saddler J, Mabee W (2008) From 1st to 2nd generation biofuel technologies. Organisation for Economic Co-operation and Development International Energy Agency, France. Acessed 11 July 2011
  216. Singh RN, Mehta K (1994) Purification and characterization of a novel transglutaminase from filarial nematode Brugia malayi. Eur J Biochem 225:625–634PubMedGoogle Scholar
  217. Siqueira FG, Filho EFF (2010) Plant cell wall as a substrate for the production of enzymes with industrial applications. Mini-Rev Org Chem 7:54–60Google Scholar
  218. Suh HJ, Lee HK (2001) Characterization of a keratinolytic serine protease from Bacillus subtilis KS-1. J Protein Chem 20:165–169PubMedGoogle Scholar
  219. Sukuruman RK, Singhania RR, Pandey A (2005) Microbial cellulases: production, applications and challenges. J Sci Ind Res 64:832–844Google Scholar
  220. Sun H, Zhao P, Ge X, Xia Y, Hao Z, Liu J, Peng M (2010) Recent advances in microbial raw starch degrading enzymes. Appl Biochem Biotechnol 160(4):988–1003PubMedGoogle Scholar
  221. Suzuki Y, Tsujimoto Y, Matsui H, Watanabe K (2006) Decomposition of extremely hard-to-degrade animal proteins by thermophilic bacteria. J Biosci Bioeng 102(2):73–81PubMedGoogle Scholar
  222. Svendsen A (2000) Lipase protein engineering. Biochim Biophys Acta 1543(2):223–228PubMedGoogle Scholar
  223. Syngkon A, Elluri S, Koley H, Rompikuntal PK, Saha DR, Chakrabarti MK, Bhadra RK, Wai SN, Pal A (2010) Studies on a novel serine protease of a ΔhapAΔprtV Vibrio cholerae O1 strain and its role in hemorrhagic response in the rabbit ileal loop model. PLoS One 5:1–11Google Scholar
  224. Takeuchi H, Shibano Y, Morihara K, Fukushima J, Inami S, Keil B, Gilles AM, Kawamoto S, Okuda K (1992) Structural gene and complete amino acid sequence of Vibrio alginolyticus collagenase. Biochem J 281:703–708PubMedGoogle Scholar
  225. Tang J, Lin X (2004) Thermopsin. In: Barrett AJ, Rawlings ND, Woessner JF (eds) Handbook of proteolytic enzymes, 2nd edn. Elsevier, London, pp 225–227Google Scholar
  226. Tang WJ, Zhao H (2009) Industrial biotechnology: tools and applications. J Biotechnol 4:1725–1739Google Scholar
  227. Tasse L, Bercovici J, Pizzut-Serin S, Robe P, Tap J, Klopp C, Cantarel BL, Coutinho PM, Henrissat B, Leclerc M, Doré J, Monsan P, Remaud-Simeon M, Potocki-Veronese G (2010) Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. Genome Res 20(11):1605–1612PubMedGoogle Scholar
  228. Taylor M, Marmer W, Brown E (2007) Evaluation of polymers prepared from gelatin and casein or whey as potential fillers. J Am Leather Chem Assoc 102(4):111–120Google Scholar
  229. Thomsen MH, Holm-Nielsen JB, Oleskowicz-Popiel P, Thomsen AB (2008) Pretreatment of whole-crop harvested, ensiled maize for ethanol production. Appl Biochem Biotechnol 148:23–33PubMedGoogle Scholar
  230. Travis J, Potempa J, Maeda H (1995) Are bacterial proteinases pathogenic factors? Trends Microbiol 3(10):405–407PubMedGoogle Scholar
  231. Treichel H, Oliveira D, Mazutti MA, Di Luccio M, Oliveira JV (2010) A review on microbial lipases production. Food Bioprocess Technol 3:182–186Google Scholar
  232. Trivelli X, Krimm I, Ebel C, Verdoucq L, Prouzet-Mauléon V, Chartier Y, Tsan P, Lauquin G, Meyer Y, Lancelin JM (2003) Characterization of the yeast peroxiredoxin Ahp1 in its reduced active and overoxidized inactive forms using NMR. Biochemistry 42(48):14139–14149PubMedGoogle Scholar
  233. Trujillo M, Mauri P, Benazzi L, Comini M, De Palma A, Flohé L, Radi R, Stehr M, Singh M, Ursini F, Jaeger T (2006) The mycobacterial thioredoxin peroxidase can act as a one-cysteine peroxiredoxin. J Biol Chem 281(29):20555–20566PubMedGoogle Scholar
  234. Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles an thermostable enzymes in biorefining. Microb Cell Fact 6:1–23Google Scholar
  235. Van der Maarel MJ, Van der Veen B, Uitdehaag JC, Leemhius H, Dijkuizen L (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94:137–155PubMedGoogle Scholar
  236. Vermelho AB, De Simone SG, d’Avila-Levy CM, Santos ALS, Melo ACN, Silva FP Jr, Bon EPS, Branquinha MH (2007) Trypanosomatidae peptidases: a target for drugs development. Curr Enzyme Inhib 3:19–48Google Scholar
  237. Vermelho AB, Nogueira de Melo AC, Branquinha MH, Santos AL, D’avila-Levy CM, Couri S, Bon EPS (2008) Enzimas proteolíticas: Aplicações Biotecnológicas. In: Bon EPS, Corvo L, Vermelho AB, Paiva CLA, Ferrara MA, Coelho RR, Alencastro RB (eds) Enzimas em Biotecnologia: Produção, Aplicações e Mercado. Interciência, Brasil, pp 269–286Google Scholar
  238. Vignardet C, Guillaume YC, Michel L, Friedrich J, Millet J (2001) Comparison of two hard keratinous substrates submitted to the action of a keratinase using an experimental design. Int J Pharm 224:115–122PubMedGoogle Scholar
  239. Volken de Souza CF, de Matos GSF, Hickmann MA, Ayub Z (2009) Environmental effects on transglutaminase production and cell sporulation in submerged cultivation of Bacillus circulans. Appl Biochem Biotechnol 158:302–312Google Scholar
  240. Waeonukul R, Kyu KL, Sakka K, Ratanakhanokchai K (2009) Isolation and characterization of a multienzyme complex (cellulosome) of the Paenibacillus curdlanolyticus B-6 grown on Avicel under aerobic conditions. J Biosci Bioeng 107(6):610–614PubMedGoogle Scholar
  241. Wang JJ, Greenhut WB, Shih JCH (2005) Development of an asporogenic Bacillus licheniformis for the production of keratinase. J Appl Microbiol 98:761–767PubMedGoogle Scholar
  242. Wang JJ, Garlich JD, Shih JCH (2006) Beneficial effects of Versazyme® a keratinase feed additive, on body weight, feed conversion and breast yield of broiler chickens. J Appl Poultry Res 15:544–550Google Scholar
  243. Wang A, Zhang F, Chen F, Wang M, Li H, Zeng Z, Xie ZT, Chen Z (2011) A facile technique to prepare cross-linked enzyme aggregates using p- benzoquinone as cross- linking agent. Korean Journal of Chemical Engineering 28:1090–1095Google Scholar
  244. Watanabe K (2004) Collagenolytic proteases from bacteria. Appl Microbiol Biotechnol 63:520–526PubMedGoogle Scholar
  245. Wei H, Xu Q, Taylor LE II, Baker JO, Tucker MP, Ding S-Y (2009) Natural paradigms of plant cell wall degradation. Curr Opin Biotechnol 20:330–338PubMedGoogle Scholar
  246. Wilson DB, Irwin DC (1999) Genetics and properties of cellulases. Adv Biochem Eng Biotechnol 65:1–21Google Scholar
  247. Władyka B, Pustelny K (2008) Cellular and molecular biology letters. Biol Lett 13:212–229Google Scholar
  248. Wohlgemuth R (2010) Biocatalysis key to sustainable industrial chemistry. Curr Opin Biotechnol 21:713–724PubMedGoogle Scholar
  249. Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 61:1706–1713PubMedGoogle Scholar
  250. Yamamura S, Yasutaka M, Quamrul H, Yokoyama K, Tamiya E (2002) Keratin degradation: a cooperative action of two enzymes from Stenotrophomonas sp. Biochem Biophys Res Commun 294:1138–1143PubMedGoogle Scholar
  251. Yang MT, Chang CH, Wang JM, Wu TK, Wang K, Chang CY, Li TT (2011) Crystal structure and inhibition studies of transglutaminase from Streptomyces mobaraense. J Biol Chem 286(9):7301–7307PubMedGoogle Scholar
  252. Yokoyama K, Kikuchi NY (2004) Properties and applications of microbial transglutaminase. Appl Microbiol Biotechnol 64:447–454PubMedGoogle Scholar
  253. Yoshioka M, Miwa T, Horii H, Takata M, Yokoyama T, Nishizawa K, Watanabe M, Shinagawa M, Muruyama Y (2007) Characterization of a proteolytic enzyme derived from a Bacillus strain that effectively degrades prion protein. J Appl Microbiol 102(2):509–515PubMedGoogle Scholar
  254. Yu YJ, Wu SC, Chan HH, Chen YC, Chen ZY, Yang MT (2008) Overproduction of soluble recombinant transglutaminase from Streptomyces netropsis in Escherichia coli. Appl Microbiol Biotechnol 81:523–532Google Scholar
  255. Yu S, Yu S, Han W, Wang H, Zheng B, Feng Y (2010) A novel thermophilic lipase from Fervidobacterium nodosum Rt17-B1 representing a new subfamily of bacterial lipases. J Mol Catal B: Enzym 66:81–89Google Scholar
  256. Yu YH-R, Li Y-XZ, Chen B (2011) Bacterial diversity and bioprospecting for cold-active hydrolytic enzymes from culturable bacteria associated with sediment from Nella Fjord, Eastern Antarctica. Mar Drugs 9:184–195PubMedGoogle Scholar
  257. Yue XY, Zhang B, Jiang DD, Liu YJ, Niu TG (2011) Separation and purification of a keratinase as pesticide against root-knot nematodes. World J Microbiol Biotechnol 27(9):2147–2153Google Scholar
  258. Yurimoto H, Maiko Y, Yoshimi K, Hiroshi M, Nobuo K, Yasuyoshi S (2004) The pro-peptide of Streptomyces mobaraensis transglutaminase functions in cis and in trans to mediate efficient secretion of active enzyme from methylotrophic yeasts. Biosci Biotechnol Biochem 68:2058–2069PubMedGoogle Scholar
  259. Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34PubMedGoogle Scholar
  260. Zeeman SC, Kossmann J, Smith AM (2010) Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol 61:209–234PubMedGoogle Scholar
  261. Zhang Y-HP (2008) Reviving the carbohydrate economy via multi-product lignocelluloses biorefineries. J Ind Microbiol Biotechnol 35:367–375PubMedGoogle Scholar
  262. Zhang C, Kim S-K (2010) Research and application of marine microbial enzymes: status and prospects. Mar Drugs 8:1920–1934PubMedGoogle Scholar
  263. Zhang J, Masui Y (1997) Role of amphibian egg transglutaminase in the development of secondary cytostatic factor in vitro. Mol Reprod Dev 47:302–311PubMedGoogle Scholar
  264. Zhang Y-HP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481Google Scholar
  265. Zhang X-Z, Heng Y, Zhang P (2010) One-step production of biocommodities from lignocellulosic biomass by recombinant cellulolytic Bacillus subtilis: opportunities and challenges. Eng Life Sci 10:398–406Google Scholar
  266. Zhao J, Ding GH, Tao L, Yu H, Yu ZH, Luo JH, Cao ZW, Li YX (2007) Modular co- evolution of metabolic networks. BMC Bioinformatics 8:311–322PubMedGoogle Scholar
  267. Zhu Y, Tramper J (2008) Novel applications for microbial transglutaminase beyond food processing. Trends Biotechnol 26(10):559–565PubMedGoogle Scholar
  268. Zock J, Cantwell C, Swartling J, Hodges R, Pohl T, Sutton K, Rosteck P, McGilvray D, Queener S (1994) The Bacillus subtilis pnbA gene encoding p- nitrobenzyl esterase: cloning, sequence and high-level expression in Escherichia coli. Gene 151:37–43PubMedGoogle Scholar
  269. Zubieta C, Joseph R, Krishna SS, McMullan D, Kapoor M, Axelrod HL, Miller MD, Abdubek P, Acosta C, Astakhova T, Carlton D, Chiu HJ, Clayton T, Deller MC, Duan L, Elias Y, Elsliger MA, Feuerhelm J, Grzechnik SK, Hale J, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kozbial P, Kumar A, Marciano D, Morse AT, Murphy KD, Nigoghossian E, Okach L, Oommachen S, Reyes R, Rife CL, Schimmel P, Trout CV, van den Bedem H, Weekes D, White A, Xu Q, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA (2007) Identification and structural characterization of heme binding in a novel dye-decolorizing peroxidase. TyrA. Proteins 69:234–243PubMedGoogle Scholar
  270. Zverlov VV, Schwarz WH (2008) Bacterial cellulose hydrolysis in anaerobic environmental subsystems—Clostridium thermocellum and Clostridium stercorarium, thermophilic plant-fiber degraders. Ann N Y Acad Sci 1125:298–307PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alane Beatriz Vermelho
    • 1
  • Eliane Ferreira Noronha
    • 2
  • Edivaldo Ximenes Ferreira Filho
    • 2
  • Maria Antonieta Ferrara
    • 3
  • Elba Pinto S. Bon
    • 4
  1. 1.Laboratory of Microbial PeptidasesInstitute of Microbiology Paulo de Góes, BIOINOVAR - Biotechonology center, Federal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil
  2. 2.Laboratory of Enzymology, Department of Cellular BiologyFederal University of Brasilia (UNB)BrasiliaBrazil
  3. 3.Medicines and Drugs Technology InstituteOswaldo Cruz FoundationRio de JaneiroBrazil
  4. 4.Laboratory of Enzyme Technology, Biochemistry DepartmentChemistry Institute, Federal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil

Personalised recommendations