Advertisement

Theory and Principles of Operation of Nanophotonic Functional Devices

  • Suguru Sangu
  • Kiyoshi Kobayashi
  • Akira Shojiguchi
  • Tadashi Kawazoe
  • Motoichi Ohtsu
Reference work entry

Abstract

In a nanometric light-matter coupling system, characteristic features, such as local excitation, unidirectional energy transfer, and state-filling effect, can be used for signal transfer and control. In this chapter, optical near-field coupling is formulated in detail by using the second quantization, and then, switching, logic, and some typical operations are discussed theoretically and numerically as examples of nanophotonic functional devices the above features used. Especially, coherence and/or decoherence of matter excitation and spatial symmetry of a system play important roles in such device operations.

Keywords

Coupling Strength Antisymmetric State Resonant Energy Transfer Nanophotonic Device Exciton Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The most part of this work was carried out at the project of ERATO, Japan Science and Technology Agency, from 1998 to 2003. The authors are grateful to H. Hori, I. Banno (Yamanashi University), T. Yatsui (The University of Tokyo), and M. Naruse (National Institute of Information and Communications Technology) for fruitful discussions.

References

  1. 1.
    Cisco Visual Networking Index: Forecast and Methodology, 2010–2015 (2011), http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
  2. 2.
    M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, IEEE J. Sel. Top. Q. Electron. 8, 839 (2002)CrossRefGoogle Scholar
  3. 3.
    A. Yariv, Introduction to Optical Electronics (Holt, Rinehart and Winston, New York, 1971)Google Scholar
  4. 4.
    J.W. Goodmann, Introduction to Fourier Optics, 2nd edn. (McGraw-Hill, Tokyo, 1996)Google Scholar
  5. 5.
    M. Ohtsu (ed.), Progress in Nanophotonics 1 (Springer, Berlin/Heidelberg, 2011), pp. 1–58Google Scholar
  6. 6.
    T. Kawazoe, K. Kobayashi, K. Akahane, M. Naruse, N. Yamamoto, M. Ohtsu, Appl. Phys. B 84, 243 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    T. Yatsui, S. Sangu, K. Kobayashi, T. Kawazoe, M. Ohtsu, J. Yoo, G.-C. Yi, Appl. Phys. Lett. 94, 083113 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    M. Naruse, T. Kawazoe, T. Yatsui, S. Sangu, K. Kobayashi, M. Ohtsu, Architectural approach to nanophotonics for information and communication systems, in Progress in Nano-Electro-Optics V, ed. by M. Ohtsu (Springer, Berlin/Heidelberg, 2006), pp. 163–182CrossRefGoogle Scholar
  9. 9.
    N. Tate, M. Naruse, T. Yatsui, T. Kawazoe, M. Hoga, Y. Ohyagi, T. Fukuyama, M. Kitamura, M. Ohtsu, Opt. Expr. 18, 7497 (2010)CrossRefGoogle Scholar
  10. 10.
    W. Nomura, T. Yatsui, Y. Yanase, K. Suzuki, M. Fujita, A. Kamata, M. Naruse, M. Ohtsu, Appl. Phys. B 99, 75 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    T. Yatsui, K. Hirata, Y. Tabata, W. Nomura, T. Kawazoe, M. Naruse, M. Ohtsu, Nanotechnology 21, 355303 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    T. Yatsui, K. Hirata, Y. Tabata, Y. Miyake, Y. Akita, M. Yoshimoto, W. Nomura, T. Kawazoe, M. Naruse, M. Ohtsu, Appl. Phys. B 103, 527 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    T. Kawazoe, M.A. Mueed, M. Ohtsu, Appl. Phys. B 104, 747 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    I. Amlani, A.O. Orlov, G. Toth, G.H. Bernstein, C.S. Lent, G.L. Snider, Science 284, 289 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    M. Ohtsu, H. Hori, Near-Field Nano-Optics (Kluwer Academic/Plenum, New York, 1999)CrossRefGoogle Scholar
  16. 16.
    Th. Förster, Delocalized excitation and excitation transfer, in Modern Quantum Chemistry, ed. by O. Sinanoğlu (Academic, London, 1965), pp. 93–137Google Scholar
  17. 17.
    S. Sangu, K. Kobayashi, T. Kawazoe, A. Shojiguchi, M. Ohtsu, J. Appl. Phys. 93, 2937 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, M. Ohtsu, Phys. Rev. Lett. 88, 067404 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    K. Cho, Optical Responses of Nanostructures: Microscopic Nonlocal Theory (Springer, Tokyo, 2003)CrossRefGoogle Scholar
  20. 20.
    C. Cohen-Tannoudji, J. Depont-Roc, G. Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics (Wiley, New York, 1989)Google Scholar
  21. 21.
    D.P. Craig, T. Thirunamachandran, Molecular Quantum Electrodynamics (Academic, London, 1984)Google Scholar
  22. 22.
    R. Guy Woolley, Handbook of Molecular Physics and Quantum Chemistry, Vol.1 (Wiley, Chichester, 2003)Google Scholar
  23. 23.
    J. Knoester, S. Mukamel, Phys. Rev. A 39, 1899 (1989)ADSCrossRefGoogle Scholar
  24. 24.
    J.R. Zurita-Sanchez, L. Novotny, J. Opt. Soc. Am. B 19, 1355 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    K. Kobayashi, M. Ohtsu, J. Microsc. 194, 249 (1999)CrossRefGoogle Scholar
  26. 26.
    K. Kobayashi, S. Sangu, H. Ito, M. Ohtsu, Phys. Rev. A 63, 013806 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    S. Sangu, K. Kobayashi, M. Ohtsu, J. Microsc. 202, 279 (2001)MathSciNetCrossRefGoogle Scholar
  28. 28.
    M. Ohtsu, K. Kobayashi, Optical Near Fields: Electromagnetic Phenomena in Nanometric Space (Springer, Tokyo, 2003)Google Scholar
  29. 29.
    E. Hanamura, Phys. Rev. B 37, 1273 (1988)ADSCrossRefGoogle Scholar
  30. 30.
    K. Kobayashi, S. Sangu, M. Ohtsu, Quantum theoretical approach to optical near-fields and some related applications, in Progress in Nano-Electro-Optics I, ed. by M. Ohtsu (Springer, Tokyo, 2003), pp. 119–158CrossRefGoogle Scholar
  31. 31.
    P. Fulde, Electron Correlations in Molecules and Solids (Springer, Berlin, 1995)CrossRefGoogle Scholar
  32. 32.
    Y. Masumoto, M. Ikezawa, B.-R. Hyun, K. Takemoto, M. Furuya, Phys. Status Solidi b 224, 613 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    K. Kobayashi, T. Kawazoe, S. Sangu, M. Ohtsu, Technical Digest of the 4th Pacific Rim Conference on Laser and Electro-Optics (Makuhari Messe, Japan, 2001), pp. I192–I193Google Scholar
  34. 34.
    N. Sakakura, Y. Masumoto, Phys. Rev. B 56, 4051 (1997)ADSCrossRefGoogle Scholar
  35. 35.
    T. Kataoka, T. Tokizaki, A. Nakamura, Phys. Rev. B 48, 2815 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    H.J. Carmichael, Statistical Methods in Quantum Optics 1 (Springer, Berlin, 1999)CrossRefzbMATHGoogle Scholar
  37. 37.
    L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, Cambridge, 1995)CrossRefGoogle Scholar
  38. 38.
    K. Akahane, N. Ohtani, Y. Okada, M. Kawabe, J. Cryst. Growth 245, 31 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    W.I. Park, G.-C. Yi, M. Kim, S.J. Pennycook, Adv. Mater. 15, 526 (2003)CrossRefGoogle Scholar
  40. 40.
    T. Kawazoe, K. Kobayashi, S. Sangu, M. Ohtsu, Appl. Phys. Lett. 82, 2957 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    K. Lindenberg, B. West, Phys. Rev. A 30, 568 (1984)MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    H. Hori, Electronic and electromagnetic properties in nanometer scales, in Optical and Electronic Process of Nano-Matters, ed. by M. Ohtsu (KTK Scientific/Kluwer Academic, Tokyo/Dordecht, 2001), pp. 1–55Google Scholar
  43. 43.
    S. Sangu, K. Kobayashi, A. Shojiguchi, M. Ohtsu, Phys. Rev. B 69, 115334 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    S. De Rinaldis, I. D’Amico, F. Rossi, Appl. Phys. Lett. 81, 4236 (2002)ADSCrossRefGoogle Scholar
  45. 45.
    F. Troiani, U. Hohenester, E. Molinari, Phys. Rev. B 65, 161301 (2002)ADSCrossRefGoogle Scholar
  46. 46.
    E. Biolatti, R.C. Iotti, P. Zanardi, F. Rossi, Phys. Rev. Lett. 85, 5647 (2000)ADSCrossRefGoogle Scholar
  47. 47.
    L. Quiroga, N.F. Johnson, Phys. Rev. Lett. 83, 2270 (1999)ADSCrossRefGoogle Scholar
  48. 48.
    M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997), pp. 222–225CrossRefGoogle Scholar
  49. 49.
    P. Zanardi, F. Rossi, Phys. Rev. Lett. 81, 4752 (1998)ADSCrossRefGoogle Scholar
  50. 50.
    M. Thorwart, P. Hănggi, Phys. Rev. A 65, 012309 (2001)ADSCrossRefGoogle Scholar
  51. 51.
    B. Coffey, Phys. Rev. A 17, 1033 (1978)ADSCrossRefGoogle Scholar
  52. 52.
    M. Naruse, T. Miyazaki, F. Kubota, T. Kawazoe, K. Kobayashi, S. Sangu, M. Ohtsu, Opt. Lett. 30, 201 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    H. Fujiwara, T. Kawazoe, M. Ohtsu, Appl. Phys. B 98 283 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    G. Parascandolo, V. Savona, Phys. Rev. B 71, 045335 (2005)ADSCrossRefGoogle Scholar
  55. 55.
    T. Kawazoe, K. Kobayashi, M. Ohtsu, IEICE Trans. Electron. E88-C (2005)Google Scholar
  56. 56.
    T. Yatsui, T. Kawazoe, M. Ueda, Y. Yamamoyo, M. Kourogi, M. Ohtsu, Appl. Phys. Lett. 81, 3651 (2002)ADSCrossRefGoogle Scholar
  57. 57.
    W. Nomura, T. Yatsui, M. Ohtsu, Appl. Phys. Lett. 86, 181108 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Suguru Sangu
    • 1
  • Kiyoshi Kobayashi
    • 2
  • Akira Shojiguchi
    • 3
  • Tadashi Kawazoe
    • 4
    • 5
  • Motoichi Ohtsu
    • 6
    • 7
  1. 1.Device Technology Development CenterRicoh Co., LtdMiyagiJapan
  2. 2.Interdisciplinary Graduate School of Medicine and EngineeringUniversity of YamanashiKofu, YamanashiJapan
  3. 3.Green Platform Research LaboratoriesNEC Corp.Kawasaki, KanagawaJapan
  4. 4.School of EngineeringThe University of TokyoTokyoJapan
  5. 5.Nanophotonics Research CenterThe University of TokyoTokyoJapan
  6. 6.School of EngineeringThe University of TokyoTokyoJapan
  7. 7.Nanophotonics Research CenterThe University of TokyoTokyoJapan

Personalised recommendations