Classical Theory of Optical Near Field

  • Itsuki Banno
Reference work entry


The main purpose of this chapter is to present the quasi-static picture of an optical field in the vicinity of small-scale material. The quasi-static picture depends on the fact that the induced boundary charge density dominates the optical near field of a small-scale material via Coulomb’s law; therefore, such an optical near field is of a non-radiative or longitudinal nature. This simple physics leads to an intuitive understanding, even in complicated systems with magneto- and electro-optical effects. As prerequisites, the definitions of elementary concepts are given: “retardation effect,” “diffraction limit,” “near field,” and “far field.” Furthermore, two numerical methods are presented using the minimum degree of freedom of an electromagnetic field; one is described by the scalar potential adequate for a quasi-static system and the other by a dual vector potential for general optical systems. This chapter is restricted to linear optical effects and is a revised version of the article titled by “Classical Theory on Electromagnetic Near Field” in Progress in Nano-Electro-Optics II (Springer-Verlag Berlin Heidelberg, 2004).


Scalar Potential Retardation Effect Bulk Effect Boundary Source Bulk Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E.A. Ash, G.Nicholls, Nature 237, 510 (1972)ADSCrossRefGoogle Scholar
  2. 2.
    I. Banno, Classical theory on electromagnetic near field, in Progress in Nano-Electro-Optics II, ed. by M. Ohtsu (Springer, Berlin, 2004), pp.1–57CrossRefGoogle Scholar
  3. 3.
    I. Banno, Phys. Rev. A 78, 033816 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    I. Banno, Phys. Rev. A 77, 033818 (2008); Erratum Phys. Rev. A 84, 019906(E) (2011). The error was kindly pointed out by V. Kambersky, R. Schäfer, Phys. Rev. A 84, 013815 (2011)Google Scholar
  5. 5.
    I. Banno, Surface phenomena caused by optical spin-orbit interaction: a pedagogical theory using quantum mechanical concepts, in Plasmons: Theory and Applications, ed. by K.N. Helsey (Nova Science Publishers, New York, 2011), pp. 437–466Google Scholar
  6. 6.
    I. Banno, H. Hori, Dual Ampere law and image of NOM (in Japanese), in Handbook for Near-field Nano-photonics, ed. by M. Ohtsu, S. Kawata (Optronics, Tokyo, 1996), pp. 240–244; ibid, in Introduction to Near-field Nano-photonics, ed. by M. Ohtsu, S. Kawata (Optronics, Tokyo, 2000), pp. 48–52Google Scholar
  7. 7.
    I. Banno, H. Hori, Trans. IEE Jpn. 119-C, 1094 (1999) (in Japanese). In this review, the numerical results in Figure 4 and the related discussion are wrong; those concern the retardation effect in the vicinity of a dielectric. This error is corrected in Sect. 2.5.7 in this chapter and Sect. 5.4 in the original book [2]Google Scholar
  8. 8.
    I. Banno, H. Hori, T. Inoue, Opt. Rev. 3, 454 (1996)CrossRefGoogle Scholar
  9. 9.
    H.A. Bethe, Phys. Rev. 66, 163 (1944)MathSciNetADSCrossRefzbMATHGoogle Scholar
  10. 10.
    E. Betzig, M. Issacson, A. Lewis, Appl. Phys. Lett. 51, 2088 (1987)ADSCrossRefGoogle Scholar
  11. 11.
    C.J. Bouwkamp, Philips Res. Rep. 5, 401 (1950)MathSciNetGoogle Scholar
  12. 12.
    M. Faraday, Experimental Researches in Electricity. Nineteenth Series (Dover, New York, 1965)Google Scholar
  13. 13.
    U.Ch. Fischer, D.W. Pohl, Phys. Rev. Lett. 62, 458 (1989)ADSCrossRefGoogle Scholar
  14. 14.
    C. Girared, D. Coujon, Phys. Rev. B 42, 9340 (1990)ADSCrossRefGoogle Scholar
  15. 15.
    K. Goto, T. Ono, Y.-J. Kim, IEEE Trans. Mag. 41, 1037 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    S.M. Huang, M.H. Hong, B.S. Luk’yanchuk, T.C. Chong, Appl. Phys. Lett. 82, 4809 (2003)Google Scholar
  17. 17.
    W. Jhe, K. Jang, Ultramicroscopy 61, 81 (1995)CrossRefGoogle Scholar
  18. 18.
    S. Jiang, H. Ohsawa, K. Yamada, T. Pangaribuan, M. Ohtsu, K. Imai, A. Ikai, Jpn. J. Appl. Phys. 31, 2282 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, M. Ohtsu, Phys. Rev. Lett. 88, 067404–1 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    T. Kawazoe, K. Kobayashi, S. Sangu, M. Ohtsu, Appl. Phys. Lett. 82, 2957 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    T. Kawazoe, K. Kobayashi, M. Ohtsu, Appl. Phys. Lett. 86, 103102–1 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    D.R. Lide, CRC Handbook of Chemistry and Physics, 87th edn. (CRC, Boca Raton, 2006). Chapter 10Google Scholar
  23. 23.
    X. Luo, T. Ishihara, Appl. Phys. Lett. 84, 4780 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    J.F. Martin, C. Girard, A. Dereux, Phys. Rev. Lett. 74, 526 (1995). Note that their intensity is just the square of the electric field, while ours is non-dimensional and the background intensity is eliminatedGoogle Scholar
  25. 25.
    G.A. Massey, J.A. Davis, S.M. Katnik, E. Omon, Appl. Opt. 24, 1498 (1985)ADSCrossRefGoogle Scholar
  26. 26.
    P.M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York/Toronto/London, 1953)zbMATHGoogle Scholar
  27. 27.
    M. Naya, S. Mononobe, R. Uma Maheswari, T. Saiki, M. Ohtsu, Opt. Commun. 124, 9 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    R.G. Newton, Scattering Theory of Waves and Particles, 2nd edn. (Dover, Mineola, 2002). Section 3.2, In Newton’s book, the Rayleigh–Gans approximation is identified as the Born approximation in the low energy limitGoogle Scholar
  29. 29.
    M. Ohtsu (ed.), Near-field Nano/Atom Optics and Technology (Springer, Tokyo, 1998)Google Scholar
  30. 30.
    J.A. O’keefe, J. Opt. Soc. Am. 46, 359 (1956)Google Scholar
  31. 31.
    D.W. Pohl, W. Denk, M. Lanz, Appl. Phys. Lett. 44, 651 (1984)ADSCrossRefGoogle Scholar
  32. 32.
    T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, J. Kusano, Appl. Phys. Lett. 67, 2191 (1995)ADSCrossRefGoogle Scholar
  33. 33.
    R. Schäfer, A. Hubert, Phys. Status Solidi a 118, 271 (1990)Google Scholar
  34. 34.
    R. Schäfer, M. Rührig, A. Hubert, IEEE Trans. Mag. 26, 1355 (1990)ADSCrossRefGoogle Scholar
  35. 35.
    D.B. Shao, S.C. Chen, Appl. Phys. Lett. 86, 253107 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    J.A. Stratton, Electromagnetic Theory (McGraw-Hill, New York/London, 1941). Chapter 3 for multipolemoment and Chaps. 7 and 9 for the analytical solution in a spherical systemGoogle Scholar
  37. 37.
    E.H. Synge, Philos. Mag. 6, 356 (1928)Google Scholar
  38. 38.
    J. Tominaga, The super-resolution near-field structure and its applications, in Optical Nanotechnologies, ed. by J. Tominaga, D.P. Tsai (Springer, Berlin/Heidelberg/New York, 2003), pp. 1–22CrossRefGoogle Scholar
  39. 39.
    K.A. Willets, R.P. Van Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    K.S. Yee, IEEE Trans. Antennas Propag. AP14, 302 (1966)Google Scholar
  41. 41.
    F. Zenhauserm, M.P. O’Boyle, H.K. Wickramasinghe, Appl. Phys. Lett. 65, 1623 (1994)ADSCrossRefGoogle Scholar
  42. 42.
    F. Zenhauserm, Y. Martin, Y.K. Wickramasinghe, Science 269, 1083 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Electrical Electronic EngineeringUniversity of YamanashiYamanashiJapan

Personalised recommendations